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Abstract. Rapid advancements in Artificial Intelligence (AI) have led
to applications in varying domains. Due to the exponential growth of
cyberspace in recent years, the domain of cybersecurity has seen sub-
stantial integrations of AI to aid in handling large amounts of data. The
discipline of malware analysis within cybersecurity has leveraged AI to
develop advanced analysis techniques. Within malware analysis, AI has
been applied to both malware detection and evasive malware generation.
Adversarial Learning on Malware (ALM) is the study of evasive modifi-
cations that is focused on AI-based detection tools. Most of the existing
ALM evasive modification methods produce samples that are not valid
executables. Solutions that produce effective valid executables are lim-
ited to injecting random code from a finite set of benign samples. Instead
of using known code, we aim to optimize the injected bytes to increase
evasion probability through adversarial learning. We propose Ch4os, a
malware modification system trained in a Generative Adversarial Net-
work setting. We introduce the Valid Machine Code Execution (VaME)
activation function, guaranteeing functionality of modified malware sam-
ples while preserving differentiability of the learning process. As well, to
address the challenge of learning efficiency and stability, we introduce
the Binary Copier Pre-training (BCP) method. We conduct experiments
on a dataset of chronologically separated malware for a simulated real-
world detection scenario and show Ch4os can generate 152% more evasive
samples compared to the state-of-the-art.

Keywords: Machine Learning · Adversarial Learning · Malware Anal-
ysis.

1 Introduction

Due to notable advancements, Artificial Intelligence (AI) has garnered widespread
attention and adoption worldwide. One area that has seen a substantial inte-
gration of AI is cybersecurity. With the current number of internet-connected
devices sharing data with one another, human-based analysis for malware detec-
tion is now impractical. Notably, the production of novel malware has reached
unprecedented levels in recent years. According to the AVTest institute, there
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have been more than 79 million new unique malware samples indexed in 2022
that attack Microsoft systems1. At this scale, it is impracticable to assume hu-
man investigation can suffice. The conventional signature-based method is also
unable to cope with the dynamic and versatile characteristics of malware vari-
ants. To augment human investigation at scale, multiple AI approaches have
been proposed for different challenges within cybersecurity.

One research area within the cybersecurity space is attacking AI-based anti-
malware tools. Given some malware and an AI-based anti-malware tool, attack-
ers modify incoming samples or feature vectors of malware with the intent of
having the sample classified as benign. This area of research, as well as the prac-
tice of creating AI methods that are more challenging to evade, is known as
Adversarial Learning on Malware (ALM). Multi-agent systems have been used
for ALM in recent works to better simulate real-world defender-attacker envi-
ronments [13].

Generative Adversarial Networks (GANs) are multi-agent neural networks
designed to create approximations to some data space with higher resolution
than conventional generative networks. GANs have been applied to the cyberse-
curity space in both malware generation and detection [6,8,11,14,15]. [6] used a
GAN to generate adversarial feature vectors for malware samples against a black
box system. A drawback of this work is the GAN was only trained to produce
a modified feature vector of the sample. Reinforcement Learning (RL) is also
used for adversarial sample generation. Current RL functional adversarial sam-
ple generation methods train against AI-based anti-malware engines with a finite
set of actions for malware sample modification [1, 13]. Molloy et al. show that
a two-party game environment improves the evasiveness of generated samples,
as well as the detection ability of an AI-based anti-malware tool [13]. Molloy et
al. [13] found that the most effective method for producing functional adversarial
samples was appending benign machine code to the malicious executable. One
drawback of this method is that it relies on a repository of pre-written benign
machine code that can be sampled from to modify malicious executable samples.

We propose a different route, Ch4os, a functionality-preserving adversarial
sample generation tool. Ch4os generates and directly optimizes functionality-
preserving machine code injected into a malicious file’s overlay, augmenting
its evasiveness against detection tools. Ch4os is trained in a GAN architecture
against a pre-trained state-of-the-art Deep Learning based anti-malware tool for
adversarial machine code optimization. Unlike the previous methods that have
proposed GAN architectures for malware generation, we introduce the VaME
activation function, a discretized function which maps continuous values to ma-
chine code. To address the learning efficiency and stability challenge of adversar-
ial machine code optimization from conventionally initialized network weights,
we propose a pre-training method that prepares the network for adversarial byte
generation by optimizing to learn the data distribution of benign machine code.
Our system has shown successful evasive sample generation against a state-of-

1 https://portal.av-atlas.org/
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the-art anti-malware engine trained on a research standard dataset. The main
contributions of this paper are as follows:

1. We propose the first GAN for functional evasive malware modification with
the novel VaME activation function, enabling differentiability of the complete
learning process.

2. To address the challenge of learning efficiency and stability, we propose the
Benign Copier Pre-training (BCP) method, which accelerates the initial con-
vergence problem.

3. We compare our training method against contemporary solutions using a
real-world dataset of malware samples and show our method can produce
152% more evasive samples than the state-of-the-art.

2 Related Work

GANs are a neural network architecture proposed by Goodfellow et al. GANs
use two networks, a generator and a discriminator, to train off one another for
better results. GANs have been designed against adversarial attacks, attacks in
which data samples are modified to be misclassified by the network [10]. This
idea has extended to cybersecurity in the domains of ALM and zero-day mal-
ware detection [8,11,14,15]. Kim et al. proposed the tGAN (transferred GAN) for
classifying malware [8]. The proposed system used an autoencoder to generate
images of malware from rescaled assembly code visualizations. The discriminator
is then transferred to a malware detector with a family classification accuracy of
96.39%. Moti et al. proposed a GAN that simulated potential zero-day malware
Binary header information [14]. The simulated headers were incorporated into a
malware dataset and trained through multiple classifiers. Training the classifier
with the generated data showed an improvement in malware classification accu-
racy from 97.12% to 98.14%. Lu et al. proposed a method of increasing a malware
dataset size by simulating malware samples with a GAN [11]. Lu et al. showed
that training a network with the simulated data could raise the classification
accuracy by 6%.

Hu et al. proposed MalGAN, a GAN architecture for generating adversarial
samples against a black box malware detector [6]. The system proposed by Hu et
al. was able to achieve a true positive percent of zero in some test datasets.
The generator in this work modifies each malware feature vector and does not
generate a functional piece of obfuscated malware. Kargaad et al. built on top
of this system by proposing a malware detection network that is trained on
the resulting data from MalGAN [7]. Nazari et al. proposed a CGAN-based
upsampling method to produce software data samples for balancing malware
datasets [16]. Trehan et al. showed that multiple different GAN architectures can
be used to generate malware mnemonic opcode sequences for model training [20].
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Fig. 1: An overview of the training and deployment process of Ch4os. Nodes rep-
resent an action, and edges represent the next action that requires such action.
(1) Generate a random vector from prior distribution. (2) Pass vector as input
to generator network. (3) Generate an approximation of data b. (4) Retrieve
a sample of benignware. (5) Generate benign copier loss from benign sample
and approximate data. (6) Train generator on loss. (7) Generate a random vec-
tor from prior distribution. (8) Pass random vector into generator network. (9)
Generate continuous approximation of adversarial machine code. (10) Retrieve
a sample of malware. (11) Generate adversarial machine code. (12) Generate
evasive malware. (13) Retrieve a sample of benignware. (14) Evaluate samples
with discriminator network. (15) Generate discriminator loss. (16) Train the
discriminator network on discriminator loss. (17) Calculate generator loss. (18)
Train generator network on generator loss. (19) Generate a random vector from
prior distribution. (20) Pass random vector into trained generator network. (21)
Generate continuous approximation of adversarial machine code. (22) Generate
adversarial machine code. (23) Retrieve a sample of malware. (24) Generate eva-
sive malware.
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3 Methodology

The Ch4os system is a deep generative neural network for adversarial machine
code generation. An overview of the Ch4os system can be seen in Fig. 1. Given
a random vector input, a kilobyte of adversarial machine code is generated to
be repeatedly appended to the end of the malware machine code. The resulting
malware sample contains machine code that has been optimized to evade static
analysis-based anti-malware engines. The adversarial machine code is generated
from the generator network and goes through two steps of training optimization.
The first step of training is optimizing the generator network to create benign
machine code from a random vector. The second step of training is optimizing
the generator to create evasive bytes in a multi-agent environment against a
pre-trained malware detection network.

3.1 Data

We define data b as benign Microsoft PE machine code. The PE file format is the
most used executable file format for Microsoft Windows operating systems. PE
Executables are written in machine code and are comprised of various headers
and sections [17]. Headers contain important information such as the intended
machine type, the number of sections, and the number of symbols. PE sections
contain code blocks for PE-specific execution. Also, a PE Executable file may
contain an overlay, optional code machine code added to the end of the file that
is not mapped to anywhere in memory [5].

Our data m is malicious Microsoft PE machine code. Malware is defined as
any piece of code that has been designed to cause harm or subvert a computer’s
intended function when executed [12]. Malicious PE files have the same format
as benign files but are designed to perform different actions on a user’s computer
than benign code.

3.2 Adversarial Networks

We build on the work of Goodfellow et al. for defining our adversarial network [4].
In this work, we optimize the distribution pg of the generator network G over
data b. We define data m as input to the generator. We also define a prior noise
variable z from distribution pz as input to the generator. We define G(m, z; θg)
as a mapping from the space of data m and the noise variable z to the b data
space. G is a deep neural network with parameters θg. We define D(·; θd) that
outputs a single scalar between 0 and 1. D(·; θd) represents the probability that
the input data came from pg rather than b. This can be interpreted as if the
input data is untrue to the data b. We train D to maximize correct assignment
of probability to both training samples from b and data generated from G. While
D is trained, we concurrently train G to minimize the correct assignment from
D for data generated from G. It follows that G and D play a two-player minimax
game with the value function V (G,D):

min
G

max
D

V (G,D) = Eb∼pdata(b) [1−D (b)] + Ez∼pz(z) [D (G (z))] (1)
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3.3 Adversarial Attack

The target of the Ch4os system is deep learning models trained in malware
detection [18]. Given an input sample executable, some preprocessing may be
required for feature set generation, and some models perform inference directly
from the software binary code [18]. These networks have a sigmoid activation
head for malware prediction. Malicious software has a true positive value of 1,
and benign software has a true positive value of 0. Based on experimentation
results, a classification threshold t ∈ 0 ≤ R ≤ 1 is chosen for the network to
optimize the area under the ROC curve [19]. The Ch4os system aims to modify
malware binaries at the machine code level to reduce the classification prediction
below the target detection network’s threshold without implicit knowledge of
the threshold. This is done by adding machine code generated by G(m, z; θg)
to the overlay of the attacking malware sample. As is the case with benign PE
executables, PE malware executables can also have machine code added to the
overlay that does not disrupt intended functionality. The adversarial attack is
conducted as follows:

1. A sequence of bytes fitted to data b is generated by the generator network
G(m, z; θg).

2. The sequence of generated bytes is concatenated to the end of a malware
sample executable.

3. The concatenation is repeated with the same machine code until the modified
sample is over the maximum input size of the target anti-malware engine.

It is intended that the adversarial machine code at the end of the malware
sample reduces the malicious probability under the detection threshold against
the target anti-malware engine.

Table 1: Structure of generator network.
Layer Size-in Size-out Kernel Params

random sample 1 0
dense1a 1 16 32
dense1b 16 256 4352
conv1a 256 256 1 65,792
lnorma 256 256 512
conv1b 256 512 1 131,584
lnormb 512 512 1024
conv1c 512 1024 1 525,312
lnormc 1024 1024 2048
flatten 1024 1024 0
Total 730,656
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3.4 Generator

A challenge for designing the generator network G(m, z; θg) is mapping output
from a continuous differentiable neural network to the discrete space of machine
code. Deep Learning optimization and training require a continuous and differ-
entiable network for backpropagation. A challenge in this context arises from the
limitation that machine code is exclusively comprised of integers, but we require
the real-valued output of a continuous activation head for model optimization.
Due to this, we propose the Valid Machine Code Execution (VaME) activation
function. We define VaME : 0 ≤ Rn ≤ 1 ⇒ 0 ≤ Zn ≤ 255, where n ∈ N is
arbitrary, as

VaME(x) = ⌊255x⌋ . (2)

The VaME activation head is selectively employed in the generation of a
functional adversarial sample, while its utilization is absent in the computation
of the generator network’s loss. This utilization technique poses no challenge to
model efficacy, as the VaME activation function has no trainable parameters.

We will now describe the generator network G(m, z; θg). The input to G(m, z; θg)
is some malware machine code m and a randomly generated noise z. We sample
z from the standard normal distribution pz(z) ∼ N (0, 1). The random noise
is upsampled by two fully connected neuron layers to a vector of length 256.
The vector is then upsampled further through three deep convolution blocks
of one-dimensional convolution and layer normalization. The result of the final
convolution block is then flattened to a vector, αz, of length 1,024. The vector
αz is then passed through a sigmoid activation function

σ(x) =
1

1 + e−x
. (3)

The sigmoid activation function transforms αz such that 0 ≤ αz ≤ 1 ∈ R1,024.
The vector αz is used for model loss calculation as well as adversarial sample

generation. We will now explain adversarial sample generation. Given the input
dimension of the discriminator function, q, we concatenate the executable code
generated by αz, to the input malware sample m with starting length r, until
the length of the malware sample m is larger q. We denote this vector as

β = m ∥⌈
q−r
1,024⌉

i=0 VaME(αz). (4)

We then remove the trailing bytes until the length of β is the correct input
length for the discriminator. The resulting machine code is the output of the
generator network, thus

G(m, z; θg) = (βi)1≤i≤q . (5)

The network architecture can be seen in Table 1.
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Table 2: Structure of discriminator network.
Layer Size-in Size-out Kernel Params

embedding 1,048,576 1,048,576×8 2,056
conv1a 1,048,576×8 2097×128 500 512,128
conv1b 1,048,576×8 2097×128 500 512,128
matrix multiply (2097×128,2097×128) 2097×128 0
mpool 2,097×128 128 0
dense1a 128 128 16,512
dense1b 128 1 129
Total 1,042,953

3.5 Discriminator

We require a pre-trained anti-malware network to act as the discriminator of the
Ch4os system. For the discriminator, we train with the modified MalConv de-
tection network trained on the EMBER dataset [2,18]. This pre-trained network
was tested in [2], resulting in an ROC of 0.998 on the testing set.

MalConv is a gated deep convolution network for malware detection proposed
by Raff et al. [18]. Table 2 shows the architecture of the discriminator model. The
input to the discriminator is a bytestring of the first megabyte of the executable’s
machine code. The bytestring is a vector b ∈ Z1,048,576, 0 ≤ b ≤ 256. There are
a total of 257 possible values for each byte value due to the use of 256 as a
padding character if the software sample is less than one megabyte in length.
The bytestring is first embedded into a space that represents each byte in the
byte string as a vector of length eight. This space is represented by D|257|×8 due
to the vocabulary of bytes in the executable being 257.

The input to the gated convolution unit is the embedded bytestring. The
gated convolution unit takes the input of the embedding and passes it through
two parallel one-dimensional convolution units. One of the convolution units
acts as an attention layer, and the other a filter layer [18]. Both convolution
layers have the same hyper-parameters of a filter size of 128, a kernel size of
500, and a stride of 500, but it is important to note there is a difference in layer
activation. One layer uses the rectified linear unit (ReLU) activation function,
and the other layer uses a sigmoid activation. The output of the two convolution
layers are multiplied with one another to yield the gated unit result. The sigmoid
activation is used on one of the convolution layers to create an attention scalar,
which is multiplied by the second layer. The output matrix of the attention
is max pooled on the embedded dimension. The output of the pooling is sent
through two fully connected neuron layers to reduce with output dimensions of
128 and one, respectively. The final neuron has a sigmoid activation function,
making the output of the MalConv network a probability. The output of the
MalConv network is the probability that the input is malicious. The network
architecture can be seen in Table 2.

The most significant difference between the MalConv network originally pro-
posed by Raff et al. and the modified version used in [2] and this work is the



Ch4os 9

input size. The input size to the original MalConv network was the first two
megabytes of machine code from the software executable, whereas the input size
to the modified MalConv is the first single megabyte of the software sample. This
input size was chosen to accommodate the memory capacity of state-of-the-art
Graphics Processing Units [2].

We use Transfer learning for the pre-trained discriminator. As previously
discussed, the original training task of the MalConv network is classifying if an
incoming sample is malicious. Due to software being only benign or malicious, it
follows that the MalConv network is trained to classify if an incoming sample is
not benign. This can be understood as assigning the probability to if the sample
is not from data b. In this study, we consider non-functional software benign due
to the inability of non-functional software to cause harm to a user’s computer. We
transfer this to the task of giving the probability that the incoming information
is not from our data b but originates from G(m, z; θg).

3.6 GAN Loss

We will now describe the loss of the discriminator D. We optimize D to maxi-
mize the probability of correct assignment of training samples from b and data
generated from G. As well we also optimize D to maximize the correct assign-
ment of samples from m. This additional optimization procedure is implemented
with the aim of ensuring discriminator D retains the capacity to assign whether
a given sample originates from data b based on malicious machine code. For a
single train step, we require some random vector z, some data bi sampled from
b, and some data mj sampled from m. First, we find the probability that sample
bi is from data b. This is done by finding the log loss of assigning bi to data b
calculated as

L1 = log (1−D(bi; θd)) . (6)

We then find the probability that our adversarial sample G(mj , z : θg) is from
data b. This is done by finding the log loss of assigning G(mj , z : θg) to data b
calculated as

L2 = log (D(G(mj , z; θg); θd)) . (7)

Subsequently, we calculate the probability that mj from data m is assigned to
data b. Similarly to the above, this is done by finding the log loss of assigning
mi to data b. This is calculated as

L3 = log (D(mj ; θd)) . (8)

Finally we compute the loss for the discriminator as the sum as the previously
discussed losses as LD = L1 + L2 + L3.

We will now describe the loss of generator G. Following the same train step
in calculating the loss for the discriminator D, the following is how the generator
loss is calculated for the same z, bi, and mj . As described in the minimax game,
we are optimizing the generator to minimize the correct assignment from the
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discriminator generated from G. To incorporate this into the generator loss, we
create the reward r, where

r = 1−D(G(mj , z; θg); θd). (9)

The reward is 1 if the discriminator assigns the adversarial sample to not in
data b with probability 0, and the reward is 0 if the discriminator assigns the
adversarial sample to not in data b with probability 1.

With the discriminator correct assignment minimization loss, we also find
the mean squared error of the adversarial bytes αz against the data bi to further
optimize the generator in mapping z to the data b. For the mean squared error
calculation, we multiply all bytes in data bi by 1

255 to map the machine code to
the range of αz. This is calculated as

L4 =
1

1,024

1,024∑
k=1

(
bik
255

− αzk

)
. (10)

Finally, the calculation of the total loss of the generator network is performed
as LG = 1− r + L4.

In experiments, we perform GAN training with the Adam Stochastic Gradi-
ent Descent method [9] for both the generator and discriminator. Both models
are trained with a learning rate of 10−9 for 1,000 epochs.

3.7 Benign Copier Pre-training

We use the weight initialization method proposed by Glorot and Bengio [3] as
the method of conventional weight initialization. When initialized with random
weights, G(m, z; θg) proves inept at generating an adversarial β. To prepare
the generator G(m, z; θg) for adversarial sample generation, the network is pre-
trained in a benign machine code generation task. We refer to this training
process as Benign Copier Pre-training (BCP).

The input to the generator network G(m, z; θg) is some malware machine code
m and a randomly generated noise z. As well, we require a set of benign machine
code as a training set. Similar to GAN training, the noise z is sampled from the
standard normal distribution. For BCP, malware machine code is not used for
training, so the input is some arbitrary machine code m. We optimize the network
to generate machine code that is similar to samples from data b. Given some
random noise z, we compare the generated machine code VaME(αz) to a vector
of benign machine code of the same length from our training set. The advantage
of this pre-training is that before any training in the GAN environment, our
network can already generate machine code that is similar in distribution to
data b. In BCP training, we optimize the generator to generate machine code
that is similar to data b whereas in GAN training, we optimize the generator to
generate an adversarial malware sample that is similar to data b.
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3.8 Benign Copier Loss

We will now describe the loss of the BCP. In BCP, we optimize the generator
G(m, z; θg) in generating machine code, αz, that is similar to data b. For a
single train step, we require a random noise z and some benign machine code bi
sampled from data b. First, we find the continuous output of the generator for
the random noise z as αz. We then optimize our network on the comparison of
each continuous value of αz to each value in bi that is mapped from the machine
code space in the same continuous space of αz. This mapping is simply done by
dividing each byte of bi by 255. We compare these bytes by finding the mean
squared error for each value in the two vectors αz and bi. We treat bi as the true
positive value and αz as the predicted value. We calculate this loss as

LBCP =
1

1,024

1,024∑
k=1

(
bik
255

− αzk

)
. (11)

The loss LBCP has the same form as L4. The loss derived from LBCP is then
propagated through the network to optimize for benign machine code generation.

In experiments, we perform the BCP with the Adam Stochastic Gradient
Descent method [9]. We train the model with a learning rate of 10−5 for 10, 000
epochs.

4 Experiments

For our experiments, we required four datasets. All samples used for training
and testing were Microsoft PE Executable files. All samples used were collected
from various online repositories.

The first dataset was used to conduct the BCP generator training. For BCP
training, we used a dataset of 1,000 benignware samples upsampled from a set
of 915 unique benign software binaries through sampling with replacement. For
the BCP training, we used a train-validation split of 0.8− 0.2.

The second dataset used was for GAN training. For GAN training, we used
a dataset of 15,000 malicious-benign pairs. Within the entire dataset, there were
15,000 unique malware samples first identified in 2021 from 173 unique families
and 4,873 unique benign samples that were up-sampled to the required 15,000
pairs.

The third dataset was required for testing the evasive ability of the Ch4os
system. This dataset was referred to as the Detection Testing Set, and was used
to determine an optimal detection threshold of the target detection network.
This dataset was comprised of 6,800 malware and benignware samples with 3,413
malicious and 3,387 benign. All malware samples in the Detection Testing Set
were first identified in 2021.

The fourth dataset was a holdout set of malware for novel generation. The
holdout set was comprised of 6,000 unique malware samples first identified in
2022 from 63 unique families.
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We conducted two experiments to demonstrate the efficacy of the Ch4os
system. The first experiment validated the BCP method. We performed GAN
training with a generator that had weights initialized by the Glorot and Bengio
method [3] as well as a generator that was first optimized with the BCP method.
As described in section 3.6, for GAN training, both models trained for 1,000
epochs on the GAN training dataset. Prior to GAN training, the generator that
was optimized with the BCP method was trained for 10,000 epochs on the BCP
training dataset. We refer to the model that was pre-trained with BCP as Ch4os
and the model that was not pre-trained as GAN-NO-BCP.

For our first experiment, we used four metrics from the training and valida-
tion sets to measure the results of training the GAN-NO-BCP model compared
to the Ch4os model. The first metric used was the generator loss. This was the
loss of the generator network on the final epoch of training. The optimal genera-
tor loss value was 0. The second metric was the discriminator loss. This was the
loss of the discriminator function on the final epoch of training. The higher the
discriminator loss, the better the performance of the generator. The third metric
used was the generator reward. The optimal value for the generator reward was
1. The fourth metric used was the detection accuracy of the generator given
based on a threshold of 0.5. The closer the training reward was to 0 indicated a
higher performance in the generator.

Table 3: Results of training models with different weight initialization in the
GAN architecture. We refer to training loss as T-Loss and validation loss as
V-Loss. We refer to training reward as T-Reward and validation reward as V-
Reward. We refer to training accuracy as T-Accuracy and validation accuracy
as V-Accuracy.
Model Gen. T-Loss Disc. T-Loss Gen. T-Reward Disc. T-Accuracy

GAN-No-BCP 0.6611 4.2006 0.5875 0.7015
Ch4os 0.1332 6.8089 0.8916 0.6016

Model Gen. V-Loss Disc. V-Loss Gen. V-Reward Disc. V-Accuracy

GAN-No-BCP 0.6544 4.2718 0.594 0.6966
Ch4os 0.1158 7.0781 0.909 0.5956

The second experiment validated the evasive ability of the Ch4os system. We
validated the evasive ability of the Ch4os system by generating an evasive set of
samples using the holdout set of malware. We then evaluated the classification
accuracy of the MalConv network trained on the EMBER dataset against the
evasive samples [2, 18]. To simulate a real-world malware triage environment,
we used the Detection Testing Set to find the Optimal Threshold (OT) for the
successful classification of the MalConv network. We determined the OT by
maximizing the Youden’s J statistic of the ROC curve. We then evaluated our
evasive set using the found OT. We compared our results against two state-of-
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the-art RL-based function malware generation systems [13] and [1] with the same
training and holdout sets as benchmarks. We also tested the evasive ability of
randomly generated bytes and the unmodified malware for further benchmarks
for the Ch4os system. Finally, we tested the evasive ability of a network only
trained through BCP and the BCP-NO-GAN networks to further study the
efficacy of Ch4os. Three metrics were used to measure the evasive experiment.
The first metric used was accuracy. This accuracy refers to the accuracy of the
MalConv network that was used as the target anti-malware engine. The lower
the accuracy, the higher the evasive ability of the system. The second metric
used was False Negative (FN). FN indicate the number of malware samples that
were incorrectly classified as benign. This metric was used to measure the rise or
fall in the number of evasive samples compared to the unmodified malware. As
well, for measuring the MalConv network on the Detection testing set we used
the metrics Area Under the ROC curve (AUC), Accuracy, F1, Precision, Recall,
False Negatives, and Optimal Threshold.

Table 4: MalConv-Ember model on results on the Detection Testing Set.
Model AUC Accuracy F1 Precision Recall FN OT

MalConv-Ember [2] 0.9134 0.9134 0.9129 0.9217 0.9042 327 0.0007

As can be seen in Table 3, Ch4os outperformed GAN-No-BCP on both the
training and validation sets. In both training and validation, the Ch4os generator
had a significantly lower loss (82% decrease and 79% decrease, respectively).
Ch4os also had a higher reward than the GAN-No-BCP generator on both sets.
For the discriminator of the GAN, the loss was much higher against Ch4os
compared to GAN-No-BCP, and the accuracy was much lower against the Ch4os
generator.

Table 5: Results of MalConv-Ember network against different adversarial sets.
Evasion Method Accuracy FN % Increase of FN OT

Unmodified 0.8958 625 - 0.0007
Random 0.9705 177 28% 0.0007
Anderson et al. [1] 0.8965 621 99% 0.0007
Molloy et al. [13] 0.8903 658 105% 0.0007
GAN-NO-BCP 0.9677 194 31% 0.0007
BCP 0.7947 1232 197% 0.0007

Ch4os 0.7323 1606 257% 0.0007
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The results of the MalConv-Ember [2] network can be seen in Table 4. From
these results, we found that the optimal classification threshold was 0.0007. This
was the OT used to compare Ch4os to other methods.

The results of the evasive experiment can be seen in Table 5. As described
above, the OT from Table 4 is used as the OT for this experiment. Ch4os per-
formed best against all other baselines in generating adversarial samples. These
results showed that using a generative network to create adversarial bytes was
more effective than the current state-of-the-art method of choosing benign bytes
from a finite set.

5 Conclusion

In this work, we propose Ch4os, the first functionality-agnostic GAN system for
problem-space evasive malware generation. A limitation of the Ch4os system is
that it only appends generated bytes to the end of the malware sample. Future
work for Ch4os includes testing the system against industry anti-malware engines
and adding adversarial machine code throughout sample executables. Future
work also includes testing the Ch4os system against different anti-malware ML
systems with varying datasets of malware and benignware.
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