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Abstract—With increasing numbers of novel malware each
year, tools are required for efficient and accurate variant match-
ing under the same family, for the purpose of effective proactive
threat detection, retro-hunting, and attack campaign tracking. All
of the state-of-the-art Deep Learning (DL) approaches assume
that the incoming samples originate from known families and
incorrectly identify novel families. Additionally, most of the
existing solutions that leverage the Siamese Neural Network
architecture either rely on pair-wise comparisons or computa-
tionally expensive preprocessing steps that are not scalable to a
real-world malware triage volume requirement.

We propose a different route, Mecha, a Neural-Symbolic
Machine Learning (ML) system for malware variant match-
ing and zero-day family detection. Mecha is comprised of an
embedding network trained in two different scenarios for byte
string embedding and an open-set approximate nearest neighbour
algorithm for variant matching and zero-day detection. Our
embedding network uses triplet loss for embedding genera-
tion and reinforcement-based Expectation Maximization (EM)
learning for full deployment optimization. We conduct multiple
in-sample and out-of-sample experiments to demonstrate the
model’s generalizability toward novel variants and families. We
also show that Mecha can detect samples outside the known set
of malware samples with an accuracy greater than 0.990.

Index Terms—Deep Learning, Reinforcement Learning, Cy-
bersecurity, Malware Analsys.

I. INTRODUCTION

With rapid advances in Artificial Intelligence (AI) and DL in
recent years, learned systems are being applied to aid humans
in all aspects of life. Areas that require large amounts of
data processing have seen greater success with applications
of AI. One such area is cybersecurity. In the cybersecurity
task of malware analysis, governments and corporations must
search through millions of files entering their network each
year for malware. According to the AVTEST Institute, there
have been 70,687,826 new unique malware samples cataloged
for Windows systems alone in 20221. Human investigation
is impossible at this scale, and traditional signature-based
methods can be evaded through packing and other obfuscation
techniques [1]–[3].
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Fig. 1. Incoming malware typically consists of new variants of known fam-
ilies or samples associated with zero-day attack campaigns. A classification-
based approach cannot handle samples for zero-day attacks or new malware
families. Using a similarity analysis system, incoming samples are analyzed
and compared to samples from known families. If samples are not within a
predefined boundary, it is likely a zero-day family.

The task of malware analysis is not simply finding if a file
has malicious intent or not. Challenges within the space of
malware analysis are family detection, similarity analysis, and
zero-day family detection [3], [4]. With the vast amounts of
unique malware samples, they are categorized into families.
A malware family is a set of malware that share a distinct
sample of malicious code [5]. The first sample in a family
is an unseen and unique piece of malicious software. All
other samples within the family are variants, iterations of the
original sample with minor differences [5]. Following that,
a variant is a modification of the original code with minor
differences; a malware sample can only be categorized into a
single family. It is important to note that varying definitions of
malware family exist, including definitions that base a family
on similar behaviour [6]. Conventional methods of family
detection aim to categorize new samples into a family based
on a known knowledge space [4], [7]–[12]. An emerging area
of research is malware similarity analysis, where methods
are proposed for evaluating the similarity between malware
samples, allowing for a more nuanced analysis [13]–[15].
By providing a similarity score between each sample, Cyber
Threat Intelligence (CTI) specialists can map the evolution
of malware variants for attack campaign monitoring. Another
possible application of malware similarity analysis is zero-day
family detection. Zero-day family detection is the challenge
of finding novel distinct samples of malicious code to flag for
human investigation. With discrete set family classification,
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there does not exist a mechanism for signaling if an incoming
sample is outside the set of families. With samples from
zero-day families having unknown signatures, structures, and
intentions, a comprehensive CTI system requires zero-day
family detection for network defence. A visualization of these
two problems can be seen in Fig. 1. Similarity hashing, another
popular solution, uses a rolling method to generate a hash for
malware samples and uses an editing distance for finding the
similarity between files [16]–[18].

One DL approach to malware similarity analysis is applying
Siamese Neural Networks. Siamese Neural Networks learn in
either a twin or triplet meta-learning method for direct classifi-
cation, similarity scoring, or similarity embedding generation.
Methods have shown the ability to match similarity between
malware samples on the basis of malware family [13]–[15],
but only [13] generated similarity embeddings for Windows
malware. Through leveraging a heterogeneous set of malware
descriptors for each sample in [13], Molloy et al. designed an
embedding network for malware sample storage and family
detection.

Although [13] has shown great success at matching samples
through measuring the distance between embeddings, there are
challenges within the domain of malware similarity analysis
that have not been addressed. One such challenge is accu-
rately matching malware samples that have been explicitly
modified for evasion [19], [20]. In a recent study, we have
shown that appending benign bytes to the end of a malware
sample is the best method for evading an ML-based malware
classifier [19]. One potential solution against this method is
by fragmenting incoming samples and performing similarity
analysis on each fragment, then aggregating the fragmented
results. A visualization of this possible solution compared to
the current state-of-the-art can be seen in Fig. 2. Matching at
the fragment level can help alleviate the issue of byte injection,
as the decision-making process does not have to consider all
fragments equally.

However, creating a solution that performs fragment-level
matching is difficult. In contrast to current solutions, the
input dimension to the Siamese network in a fragment-based
solution is much smaller. From this, we found that networks
performed well in the triplet training task, but when trans-
ferred to a deployed environment where incoming fragments
were compared to known fragments for similarity analysis,
performance decreased dramatically. To address this neighbour
search challenge, we require training for neighbour search.
Such training would simulate a deployment environment,
where fragments are matched to their closest neighbour for
similarity analysis (step 1 of our proposed solution in Fig. 2).
This method requires a set of fragments pre-embedded by the
network for training samples to search through (support set).
It is important to note that this training can not optimize the
model directly, because the support set used would contain
the error of the model, making it only an approximation
of the optimal. Therefore, an iterative training method that
updates both the network and the support set is required
for network optimization. A solution to this approach is
Expectation Maximization (EM). EM is an iterative approach
to finding the optimal parameters of a statistical model that

Malicious code Injected benign/noise code

Traditional file level similarity analysis method: similarity score to malware
variants: 0.2

Malicious code Injected benign/noise code

Step 1: Fragmented functionality similarity score to malware variants 
0.9 1.0 0.2 0.01 0.02 0.00 0.03 0.1

Step 2: Aggregated file level similarity analysis: similarity score to
malware variants: 0.95 

Conventional Malware Similarity Analysis Methods

Proposed Solution

Fig. 2. A comparison of conventional malware similarity analysis tools to
the proposed solution. In the event of a byte-appending attack, conventional
methods have no mechanism for separating true malicious code from injected
code. The proposed solution follows a two-step fragment and aggregate
approach, allowing for accurate variant matching.

cannot be solved directly. By interpreting the search results
on training samples as a probability distribution of families, a
reward can be derived and trained through the network using a
Reinforcement Learning (RL) paradigm. Then, the support set
can be re-generated with the updated distribution parameter
estimates.

We propose Mecha, a malware embedding and open-set
family detection system that leverages multiple ML models.
Mecha is divided into three sub-components: Mecha.emb,
Mecha.gen, and Mecha.match. We propose Mecha.emb, a
novel malware embedding network that embeds kilobyte
(1,024) long byte strings of software byte code. This network
aims to generate an embedding for a byte string that best repre-
sents the functionality of the kilobyte instead of an embedding
that best represents the family of the sample. As well, we train
our network on triplet pairs derived from malware and benign-
ware to ensure a differentiation in byte string functionality.
Unlike conventional solutions, such as similarity hashing, the
Mecha.emb system embeds data into a hypersphere, which
enables scalable approximated nearest neighbour search. To
address the challenge of fragment matching, we propose a
dynamic embedding nearest neighbour matching training gym,
Mecha.gen. The Mecha.gen training gym conducts a nearest
neighbour search on a changing support set for network gener-
alization. Due to a direct loss being calculated from similarity
search being non-differentiable, we deploy an RL scheme
with EM for sequential search and update training. We show
that training the embedding network in a simulated malware
triage environment after initial training raises family matching
accuracy, and decreases the distance between samples within
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the same family. Finally, we build on the state-of-the-art
approximate nearest neighbour algorithm [21] for open set
family detection. An overview of the Mecha system can be
seen in Fig. 3. We conduct multiple experiments on both
in-sample and out-of-sample malware families to ensure our
model is generalized and accurate at malware family detection.
The main contributions of this paper are as follows:

• We design the first multi-ML system for malware variant
matching that leverages the meta-learning structure of
Siamese Neural Networks.

• We design an RL method for further training the embed-
ding network for dynamic support set nearest neighbour
search.

• We combine decision fusion of byte string variant match-
ing from open-set nearest neighbour search for fast and
accurate variant matching.

• We train Mecha on real-life malware samples and evalu-
ate it on in-sample, and out-of-sample malware families
in chronological order. The experiment shows that our
model outperforms current state-of-the-art methods for
malware variant similarity analysis in both known, and
zero-day family detection.

The organization of this paper is as follows. First, we discuss
the threat model for the Mecha system. Second, we discuss
the Mecha.emb subsystem. Third, we discuss the Mecha.gen
training method. Fourth, we discuss the Mecha.match system.
Fifth, we discuss the experiments used to quantify the efficacy
of the Mecha system. Sixth, we discuss related works. Seventh,
we discuss possible future directions.

II. THREAT MODEL

The Mecha system works as a family classification tool.
Mecha can be incorporated into a CTI pipeline for classifying
malware samples and showing similar samples, leading to
the decision simultaneously. Due to the Mecha system being
designed for classification, other tools are required for malware
triage and detection. Mecha can be used to gain a deeper
understanding of malware samples collected by CTI profes-
sionals. In a real-world deployment setting, Mecha can be
used for classifying known malware into families. In a research
setting, Mecha can be used to explore the similarity of zero-
day samples within a family as well as family classification.

Additionally, since Mecha is designed for malware similar-
ity analysis, incoming samples are assumed to be correctly
classified as malware. In a typical CTI pipeline such as As-
semblyline2, the processes are distinct: starting from endpoint
malware triage, progressing to server-side malware filtering,
and finally ending in family classification and investigation
through both static and dynamic analysis. These are separate
stages with specific roles. The family labelling step assumes
that prior stages in the pipeline are configured with an accept-
able level of false positives and negatives. Such false positives
are expected to undergo further investigation to either confirm
attacks or refine the endpoint triage configuration to avoid
similar cases in the future. Family labelling provides insights

2Assemblyline Malware Processing System

into the detected attacks, such as their tactics, purposes, and
provenance. It builds on the foundational assumption that
the false positive and the false negative levels from earlier
stages are adequately managed, given the capacity of the
security team and the risk tolerance level of the organization.
Mecha’s design is intentionally isolated from the preceding
steps to maintain independence, as any other alternative solu-
tions during this step. Its effectiveness does not hinge on the
specific methods employed in earlier classification stages, but
it acknowledges that false positives from those steps require
investigation regardless. If an incoming sample has undergone
significant modification for evasion by adding benign binary
fragments, the worst-case scenario for the sample is being
classified as ‘unknown’ and requiring further investigation.
The Mecha system’s advantage is its ability to classify mal-
ware as ‘unknown’. This classification often indicates the
possibility of a new attack family with distinct behaviours
or tactics, which warrants further human investigation. Such
cases are particularly valuable as they may reveal novel attack
patterns, origins, or methodologies. When traffic is classified
as ‘unknown’, CTI professionals at the Security Operations
Center (SoC) are prompted to initiate an in-depth analysis.
This process typically involves methods such as code analysis,
extended sandboxing, and attack graph analysis to uncover
the nature of the sample. The aim is to determine whether
the sample belongs to an unrecognized malware family or
represents the first instance of an entirely new family. The
insights gained from these investigations are critical. If a
new family is identified, it can be incorporated into Mecha’s
training sets to enhance its classification capabilities to trace
emerging new attacks. Additionally, understanding the distinct
behaviours and tactics of the unknown sample enables better
preparation against similar threats in the future. By enabling
this escalation and analysis process, Mecha not only aids in
labelling existing malware families but also plays a pivotal
role in the discovery and characterization of emerging threats.

III. MECHA.EMB

Mecha.emb is a deep convolution network for byte string
embedding. Given a string of 1,024 bytes from a software ex-
ecutable, Mecha.emb generates an embedding that represents
the byte string in Euclidean space.

A. Embedding Modality: Byte String
The input to the Mecha.emb network is a byte string of

length 1,024 extracted from the malware. A length of 1,024
was chosen to balance the amount of functionality that can
be modelled by the byte string, with the input size to the
neural network. As well, the batch mode of computation done
within CPUs and GPUs was considered. A byte string is a
vector of integer values with the range [0, 255] with each value
representing a byte of binary code. For binary code, we refer
to all bytes in an executable. Byte strings were chosen as the
input modality to the Mecha.emb system, due to the speed and
accuracy of extraction. Many ML-based systems designed for
malware analysis require each sample to be decompiled prior
to analysis. Decompilation is not a deterministic process, and

https://cybercentrecanada.github.io/assemblyline4_docs/
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Fig. 3. Overview of the Mecha system. (1) a corpus of malware and benignware is collected. (2) two malware variants from the same family, as well as a
benign sample, are randomly chosen. (3) the files are fragmented into byte strings of length 1,024. (4) a set of triplet pairs is generated from the fragmented
byte strings. (5) this process is repeated to create a large dataset of different family triplet pairs. (6) the Mecha.emb network is initialized with random weights.
(7) the Mecha.emb network is trained with a triplet loss. (8) a corpus of malware is collected. (9) two different variants from the same family are chosen from
a random family. (10) both samples are fragmented into their byte strings. (11) a training set and support set is generated from the byte strings. (12) the set
selection process is repeated to create large and diverse training and support sets. (13) the pre-trained Mecha.emb is ready for training. (14) the support set is
embedded by the Mecha.emb network. (15) a batch of the training set is embedded by the Mecha.emb network. (16) a neighbour search is conducted on each
sample in the training batch to the support set. (17) a reward is calculated for the batch matching and propagated through the Mecha.emb network. (18) the
batch neighbour search is conducted over the entire training set. (19) at the end of training from the entire set, the support set is embedded with the updated
Mecha.emb, and training continues. (20) an unknown malware sample is introduced. (21) the unknown sample is fragmented into byte strings. (22) the byte
strings are organized for embedding. (23) the Mecha.emb network trained through Mecha.gen embeds the unknown byte strings. (24) the Mecha.match system
finds the nearest neighbours to the incoming byte strings. (25) zero-day classification is done on the unknown byte strings. (26) a majority vote decision
fusion is conducted to classify the unknown sample.

many parameters within decompilation software may greatly
affect the resulting source code that is used to analyze the sam-
ple. Byte strings can be read directly from the executable file,
removing any non-deterministic process from the embedding
system.

B. Model Structure

Prior work on malware similarity analysis through Siamese
networks has generated either embeddings or similarity scores
based on information from the entire sample [7], [8], [13]–
[15], [22]. No work has been done in the malware family
detection space by using byte strings of the raw executable
as the input for an embedding network. This differentiates
the motivation between the Mecha.emb network and other

Siamese networks used for malware family detection. Whereas
prior work aims to train a network for finding the similarity be-
tween entire malware samples, the motivation for Mecha.emb
is reducing the effect of minor changes made to malware by
creating multiple embeddings for a single sample.

The structure for Mecha.emb is based on the FaceNet
architecture proposed in [23]. The structure of FaceNet is a
collection of two-dimensional convolution, pooling, and nor-
malizing layer blocks. Due to the input of Mecha.emb being
one-dimensional byte strings, the two-dimensional convolution
layers were replaced with one-dimensional convolution. The
FaceNet architecture has seen great success in the domain
of image embedding [23]. Similar networks have also seen
success in the malware similarity analysis domain without
the use of normalization layers throughout the network [14].
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TABLE I
STRUCTURE OF THE MECHA.EMB DEEP CONVOLUTION NETWORK.

Layer Size-in Size-out Kernel Params
embedding 1024 1024×8 2048
conv1a 1024×8 897×64 128 65600
mpool 897×64 224×64 0
bnorm 224×64 224×64 256
conv1b 224×64 193×32 32 65568
mpool 193×32 96×32 0
bnorm 96×32 96×32 16 128
conv1c 96×32 81×32 16416
mpool 81×32 20×32 0
bnorm 20×32 20×32 128
flatten 20×32 640 0
L2 640 640 0
Total 150144

Although Mecha.emb works within the domain of malware
analysis, Mecha.emb normalizes data throughout the architec-
ture due to the embedding nature more resembling Facenet
than other networks in malware similarity analysis. Although
it is typical to use sequence-based network layers on one-
dimensional byte strings, such as a Long Short Term Memory
or Gated Recurrent Unit layer, one-dimensional convolution
layers have seen success in the area of malware detection with
the added benefit of reduced runtime [24]. The structure of the
Mecha.emb network can be seen in Table I. The Mecha.emb
architecture has fewer convolution blocks than previously
discussed work. This was chosen due to the input dimension of
the Mecha.emb network being significantly smaller than other
networks discussed. Further modifications have been made to
the model structure to fit the malware embedding challenge.
Through empirical testing, we found using max-pooling layers
with different dimensionality aided in generating a more effec-
tive malware embedding. Using different pooling sizes allows
for control of the size of the final embedding of a sample
without significantly increasing the depth (as well as runtime)
of the embedding model. Also, any spatial inconsistencies are
handled by truncating the input.

C. Triplet Loss
We represent an embedding of byte string x as f(x) 2 Rd

where f(·) is Mecha.emb, and d is the output dimension of
the Mecha.emb network. As described in Table I, the output
dimension of f(·) is d = 640. The training of the Mecha.emb
network is done using a Euclidean triplet loss derived in [23].
We will now describe the loss in detail.

The Mecha.emb network does not learn from any ground-
truth malware-to-family tuples, but compares its output of dif-
ferent samples for deriving a loss. The methodology of deriv-
ing loss from a distance between three samples is conventional
for embedding networks trained in a triplet paradigm [23].
This loss is related to the distance between the three samples,
two from the same family and one from a different family.
Although a lower loss value implies that the network embeds
samples from the same family closer to one another, it does
not explicitly indicate possible error in classifying malware
samples into families. For a loss calculation of Mecha.emb,
three byte strings are required. The first two are byte strings
of length 1,024 from different samples in the same malware

family at the same starting index. These two samples are
the anchor and the positive samples, denoted as xa and xp

respectively. The third byte string is a random byte string from
a benign sample, and serves as the negative sample denoted
as xn.

Using a benign sample as the negative for the training is a
nontrivial decision. In prior works on malware family detection
using similarity loss, the motivation of the model training is to
find the similarity in malware families, whereas the motivation
of training Mecha.emb is to find the similarity of byte string
functionality. Using benign software as the negative sample
ensures differing functionality between the negative and the
positive.

Triplet loss is calculated by finding the difference in distance
between the anchor, positive, and negative. The motivation
for this loss is training the Mecha.emb network to output
embeddings close to one another in Euclidean space if they
have similar functionality, and apart from one another if they
have differing functionality.

The set of a single anchor, positive, and negative is known
as a triplet pair, T. Mecha.emb is trained on the loss of a batch
of triplet pairs of length b at each train step. We denote our
batch as B = {T1,T2, ...Tb} where Ti = {xa

i , x
p
i , x

n
i }. For a

single train step we calculate our loss as L =

bX

i=1

h
kf(xa

i )� f(xp
i )k

2
2 � kf(xa

i )� f(xn
i )k

2
2 + ↵

i

+
(1)

where ↵ is a margin enforced between positive and negative
pairs. Due to the distance function in the loss being unbounded
(the range of Euclidean distance is [0,1)), learning on all
triplet differences slows down convergence [23]. The constant
↵ ensures only triplet differences that are within the specified
margin are trained through the network. For Mecha.emb
training, we use an ↵ = 0.2. We chose a margin value of
0.2 due to its success in [23].

In experiments, we train the Mecha.emb network using the
Adam Stochastic Gradient Descent method [25]. We train
the Mecha.emb model with a learning rate of 0.0001 for
10 epochs. These values were chosen from an empirical
evaluation of model training (observing training efficiency
with differing learning rates and iterations).

D. Triplet Selection
As described above, we use malware and benignware for

creating our triplet dataset for training the Mecha.emb net-
work. We will now describe the process for generating the
dataset. For triplet selection, files are chosen with replacement
from a corpus of malware and benignware. Three files are
chosen from the corpus for a single triplet pair. The files used
for the anchor and positive are chosen from the same malware
family without replacement. The negative is chosen randomly
from the set of benignware. We define each file as a set of
byte strings. We define each set to contain all non-overlapping
byte strings of length 1,024 contained in the chosen file. This
method removes the final byte string of each file that is less
than length 1,024. This is done to avoid any negative impact on
similarity training caused by padding that would be necessary
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on the final byte string to extend it to 1,024 bytes. For the
anchor, positive, and negative we define the byte string vectors
as a, p, and n respectively.

For the triplet pair, an index q is randomly chosen as the
starting index, subject to the following constraints:

q ⌘ 0 mod 1,024. (2)

q < min (dim (a) , dim (p) , dim (n))� 1,024, (3)

These constraints omit the byte string at the end of each
file. A triplet pair is the byte strings of length 1,024 from a,
p, and n at index q. The data for training and validating the
Mecha.emb network is generated using this method. For a set
of malware and benignware, a large number of unique triplet
pairs can be sampled for training. We will now describe the
maximum number of triplet pairs that we can generate from
a set of malware and a set of benignware.

First, we define the software cutting function c : N↵ ! N
where ↵ is arbitrary that has an input of a software sample,
and outputs the number of byte strings that can be generated
from the sample. We define c as

c (l) = dim (l)� dim (l) mod 1,024 (4)

where l is a software sample. Given a set of malware M =
{F1,F2, . . . ,Fm} of size m where Fj is a set of malware sam-
ples in family j, and a set of benignware S = {b1, b2, . . . , bk}
of k benign software samples. For an arbitrary malware family
Fj = {fj,1, fj,2, . . . , fj,p} with p samples, the number of
triplet pairs that can be made for arbitrary malware sample
fj,r can be computed by

kX

y=1

" 
pX

x=1

min (c (fj,r) , c (fj,x) , c (by))

!
� c (fj,r)

#
. (5)

It follows that Equation 5 can be expanded over each file in a
malware family, and over each family in the set of malware M.
This software cutting process allows us to generate very large
datasets for model training. As an example, given a malware
family with two samples, each 1 megabyte (1, 048, 576 bytes)
in length, and a set of benign software, each sample 1
megabyte in length, previous works in this area would be
able to generate two triplet pairs [13]–[15]. In contrast, our
software cutting method allows for 2, 000 unique triplet pairs.
This wide range of possible training examples from a small
set of software allows for a more diverse training set given
the same malware samples compared to previous work.

IV. MECHA.GEN

Mecha.gen is a gym environment to aid in network gener-
alization. Given an embedding network, a training set, and a
support set, Mecha.gen uses an RL technique to further train
the embedding network.

A. Gym Environment

In previous works, as well as in evaluating the Mecha.emb
system, we found that the embedding network is strong at
creating similar embeddings for samples in the same family
but fails to make a great distance between samples from
different families [13]. To aid with the problem of embedding
separation, we train our embedding network in a simulated
deployment gym. This gym is Mecha.gen. Mecha.gen is a
secondary training for the Mecha.emb embedding network to
promote generalization over different families. We will now
describe the Mecha.gen gym in detail.

Given an embedding network f(·), a training set, and a
support set, we take an EM approach to training the network.
EM is a two-step algorithm for estimating underlying param-
eters to a distribution [26]. In this case, the distribution is
the probability distribution that a training sample is within
each family used for the support set. Our network, f(·), is
an estimator of our probability distribution that is optimized
through our EM learning process. We say that the distribution
we are trying to estimate is the perfect malware embedder.
Given that for both the training and support set we do not
have the perfect embeddings, we require an EM approach to
iteratively train the network for variant classification. First,
the probability distribution of each training sample is found
in batches and trained into the network. Second, after each
training epoch, the embedding network, f(·), can yield more
accurate embeddings, so each byte string in the support set
is embedded with the updated parameters of f(·), and the
training continues. Such an algorithm is required for training,
due to both the training and support set being estimations of
an unknown distribution.

The network training process of our EM algorithm is as
follows. First, our network embeds all samples in the support
set and stores them for training. Second, our network embeds
samples in the training set in batches. For each batch of
training samples, the Mecha.gen loss is derived and propagated
through the embedding network f(·). Once all training batches
have been evaluated, the embedding network f(·) embeds the
support set with the newly trained parameters. This iteration
of training matches that of an EM system.

The Mecha.gen training algorithms are shown in Algo-
rithm 1 and Algorithm 2. Algorithm 1 is the expectation step of
the EM method. For the expectation algorithm, the testing and
support sets are required along with the embedding function
and the chosen optimizer. As discussed above, the embedding
function is Mecha.emb, and the optimization algorithm is
Adam. Line 1 loops through each batch of data in the training
set. Line 2 initializes the loss variable L. Line 3 iterates over
each sample b in the batch B. Line 4 initializes the distribution
to an empty array. Line 5 iterates over each family set in
the support set. Line 6 finds the shortest distance between
the testing samples and all the embeddings in family F . That
shortest distance is then added to the family distribution. Line
8 normalizes the distribution with an Euclidean-ordered nor-
malization algorithm. Line 9 calculates the reward for sample
b by finding the probability that sample b is in the correct
family from the family distribution D. Line 10 calculates the
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Algorithm 1: Mecha.gen expectation algorithm.
Input: embedding function f(·), optimizer function

a(·, ·)
Output: embedding function f(·)
Data: testing set T , support set S

1 for B in T do
2 L = []
3 for b in B do
4 D = []
5 for F in S do
6 D.add

⇣
mins2F kf(b)� sk22

⌘

7 end
8 D = normalize(D)
9 r = D[b.true family]

10 l = 1� r
11 L.add(l)
12 end
13 f.update weights(a(B,L))
14 end
15 return f(·)

Algorithm 2: Mecha.gen maximization algorithm.
Input: embedding function f(·), family size x
Output: support set S
Data: support super set S0

1 S = []
2 for F 0 in S0 do
3 F = []
4 F 0 = random sample(F 0, x)
5 for s0 in F 0 do
6 s = f(s0)
7 F.add(s)
8 end
9 S.add(F )

10 end
11 return S

loss from the reward. Line 11 adds the sample loss to the
batch loss set. Line 13 updates the weights to the embedding
function f from the batch of data, the loss, and the optimizer.
Line 15 returns the embedding function with the new weights.
Algorithm 2 is the maximization step of the EM algorithm.
Given the embedding function, the family size, and the support
super set, a support set is generated for training. Line 1
initializes the support set S. Line 2 iterates over each family in
the support super set. Line 3 initializes the family set F . Line
4 takes of a random sample of size x from family F 0. Line 5
iterates over each sample in the family F 0. Line 6 embeds the
sample. Line 7 adds the embedding to the family set F . Line
9 adds the family set to the support set S. Line 11 returns the
updated support set for training in Algorithm 1. It is important
to note that the first step of the EM training is initializing the
first support set with Algorithm 2.

B. EM Loss
For the Mecha.gen training process, a novel EM loss must

be defined. Due to approximating probability distribution
being non-differentiable, we take a reinforcement learning
approach for creating a reward based on the probability
distributions of each training sample. For Mecha.gen training,
we require a support set S = {F1,F2, . . . ,Fn} of n sets of
malware families. Each Fi = {ei,1, ei,2, . . . , ei,n} is a set of
byte strings from malware family i. For a given training sample
s in malware family 0  t  n, our reward is the probability
that sample s is in family t. To find this probability, we first
define the family minimum distance function m(·, ·) as 6

m(a,E) = min
e2E

kf(a)� f(e)k22 (6)

where a is a single byte string, and E is a set of malware
byte strings. For our sample s in family t we find the family
minimum vector m =

(m (s,F1) , . . . ,m (s,Fn)) (7)

where the value in index i of vector m is the shortest distance
between the training sample s and the embeddings in malware
family Fi. We calculate the family probability vector as

p = kmk (8)

this normalizes the family minimum vector so the sum of all
elements in p is 1, making each element pi the probability
that sample s is in family i. The reward for training sample s
is r = pt. The loss propagated into the network is 1� r. As
described above, the loss is averaged over batches before being
propagated through the network. In experiments, we train in
the Mecha.gen training process for 100 epochs using the Adam
Stochastic Gradient Descent method [25] with a learning rate
of 0.000001. These values were chosen based on empirical
hyper-parameter tuning to increase convergence time within
24-hour time frame.

V. MECHA.MATCH

The Mecha.match system is an open set approximate nearest
neighbour search algorithm that builds on Hierarchical Nav-
igable Small World (HNSW) done by Malkov and Yashunin
in [21]. In deployment, the Mecha.match system has a five-
step process for an incoming malware sample.

• Step 1: Given a set of known malware samples, embed
all byte strings of length 1,024 and insert them into the
network.

• Step 2: For incoming malware, run the sample through
the Mecha.emb network to generate an embedding for
each 1,024 length byte string in the malware sample.

• Step 3: Find the first nearest neighbour for each embed-
ded byte string.

• Step 4: For each of the nearest neighbours, if the neigh-
bour is outside of the predefined known threshold ⌧ , set
the class of the byte string as ‘unknown’.

• Step 5: Set the predicted class of the malware sample by
majority vote decision fusion on classes of the embedded
byte strings.
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This method allows for fast classification of malware, as
well as zero-day classification without increasing algorithm
order.

The work of [21] proposes an approximate K-nearest neigh-
bour search based on navigable small world graphs with a
controllable hierarchy. Navigable small world networks are
networks with logarithmic or algorithmic scaling of the greedy
graph routine [27], [28]. Steps 1 and 3 of the Mecha.match
system expand on [21].

Step 1 of Mecha.match is constructing a graph structure
by iteratively inserting embedded malware byte strings. The
insertion of a single embedding is as follows. Starting at the
highest layer of the graph, a greedy algorithm is used to find
the nearest neighbours of the incoming embedding. Then, the
insertion algorithm moves to find the nearest neighbours of the
next layer down, following the connection from the previously
found nearest neighbours. This process continues for all layers
in the hierarchy. The greedy algorithm from [21] is built on the
algorithm from [29]. Once all levels in the hierarchical graph
have been evaluated, the incoming sample is connected to the
nearest neighbour found in the iterative search process. In our
experiments, the greedy algorithm looks for the single closest
neighbour in each level of the hierarchy. As well, following
the Euclidean distance loss used for training the Mecha.emb
system, we use Euclidean distance for measuring the distance
of samples in the graph.

Prior to Step 3, an incoming malware sample is pre-
processed in Step 2. This pre-processing uses the Mecha.emb
system to embed the malware sample byte strings into the
same vector space as the stored malware embeddings. For
each byte string in the incoming sample, the byte string is
embedded and awaits classification.

Step 3 of the Mecha.match system is classifying each
embedding from an incoming malware sample. The search
algorithm follows the insertion method. Given an incoming
sample, the graph is iteratively searched with a greedy algo-
rithm for the single closest neighbour to the incoming sample.

Step 3 is run for each embedding generated for a sin-
gle sample. For each embedding, the classification and the
distance between the incoming embedding and its nearest
neighbour is saved. Step 4 of the Mecha.match system is
zero-day classification. If an incoming sample is outside the
boundary of known malware embeddings, it is classified as a
zero-day sample. For an embedding, if the distance between
the embedding and its nearest neighbour is greater than a
chosen ⌧ , then the classification of the embedding is set to
‘unknown’.

The final step of the Mecha.match system (Step 5) is
the decision fusion of the embedding classifications. Given
the classification of all of the embeddings for a malware
sample, the most popular classification is set as the predicted
classification of the sample.

In a real-world environment, once a sample has been
classified, all embeddings are added to the Mecha.match graph
with the predicted class as the ground-truth classification. For
evaluating the Mecha system, testing samples were not added
to the graph after classification. For evaluation, we use a
⌧ = 0.01.

TABLE II
PARAMETERS USED FOR TRAINING THE MECHA SYSTEM.

Parameter Macha.emb Mecha.gen

Optimizer Adam Adam
Learning Rate 1.00E-04 1.00E-06
Batch size 128 128
Training Epochs 10 100
Margin ↵ 0.2 ⇠

VI. EXPERIMENTS

We required three different datasets for conducting valid-
ity experiments on the Mecha system. Multiple datasets of
chronologically categorized data were used. In experiments,
we aimed to address the following research questions:

1) Does Mecha recognize existing malware? (RQ1)
2) Does Mecha recognize new (zero-day) malware? (RQ2)
3) How does Mecha perform with a varying number of

families? (RQ3)
We conducted five experiments to demonstrate the validity

of the Mecha system. The first two experiments were con-
ducted to show that the Mecha system was generalizable to
different malware families. These two experiments addressed
RQ1. The second two experiments showed if the Mecha
system could reliably separate known malware families from
unknown malware families. These two experiments addressed
RQ2. These experiments observed how Mecha would per-
form in a real-world scenario where unseen samples are
classified by the network. We used the results to infer the
performance of Mecha in a real-time scenario and further
show its practicability. These experiments do not analyze the
samples further after Mecha classification. In a real-world
scenario, the decision on further analysis would be chosen
by the CTI professionals in SoC or other threat ingestion
centers, such as extended sandboxing or bare-metal evaluation.
The final experiment observed how Mecha performed with
different family set sizes. This experiment addressed RQ3. As
well, multiple state-of-the-art ML methods and Siamese-based
malware family detection methods were compared against
the Mecha system in family matching ability. The Mecha
system was developed on a Linux machine with 16 cores Xeon
Gold 2.3/3.9 GHz, a single RTX6000 with 24GB of VRAM,
and 200GB of memory. Mecha was developed in Python
using open-source packages such as TensorFlow, NumPy, and
Pandas. The parameters used for training the Mecha system
can be seen in Table II. The loss for training the Mecha.emb
network can be seen in Fig. 4. The final training loss was
0.0028 and final validation loss was 0.1777. The loss for
training the Mecha.emb network in the Mecha.gen deployment
simulation can be seen in Fig. 5. The final training loss was
0.0639 and final validation loss was 0.0647.

A. Dataset
Three different datasets in total were used for training and

evaluating the Mecha system: training-2021, testing-2022-q1,
and testing-2022-q2. The training dataset, training-2021, was a
collection of real world malware samples identified in the year
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Fig. 5. Training and validation loss for the Mecha.emb network in Mecha.gen
deployment simulation training. Final training loss of 0.0639 and final
validation loss of 0.0647.

2021, and benign samples from varying years. The two testing
sets were datasets of malware identified in the first and second
quarters of 2022. We separated our data chronologically to
better simulate a real-world malware triage environment. We
will now describe each dataset in detail. A visualization of the
datasets can be seen in Fig. 6.

All malware samples in the Mecha training corpus were
collected from the online repository MalwareBazaar [30]. Mal-
wareBazaar is a popular open malware project that provides
malware samples to the CTI community [30]. The labelling
approach for temporal information on malware samples was
the date the sample was first uploaded to the database. Mal-
wareBazaar conducted its own family classification of malware
samples with VirusTotal; we used their sample classifications
as the ground-truth for our experiments. All malware samples
used had unique hashes associated with the variant. Benign
files used were collected from various online repositories.

The Mecha training dataset, training-2021, was a corpus
of malware and benignware used for generating the triplet
pairs for Mecha.emb training, and the testing and support
sets used for Mecha.gen training. The Mecha training corpus

was comprised of 50,248 malware samples sampled from 175
families, and 7,828 benign samples from varying software
vendors. All samples used were Windows Portable Executable
files. As described above, the benign samples were only
used for generating the negative samples of the triplet pairs.
1,000,000 triplet pairs were generated from the corpus for
the Mecha.emb training. Triplet pairs were randomly sampled
byte strings from the corpus of malware and benignware with
replacement. As described above, Mecha.gen training process
required two datasets for a single training cycle: support set
and embedding set. The support set acted as a simulated
malware repository that a CTI organization would use to
compare incoming samples against; it consisted of malware
samples embedded at the beginning of the training cycle.
The embedding set consisted of malware samples that were
embedded throughout the training cycle and were classified
based on the support set. Both the support set and the
embedding set are sampled randomly from the training set at
the beginning of each training epoch. This ensures no leakage
occurs from the evaluation dataset, as both the support set and
embedding set are exclusively sampled from the evaluation
dataset later during performance evaluation. This separation
maintains the integrity of the results and prevents unintended
influence between the training and evaluation phases. Two
samples were chosen for each of the 175 families in the
training data, and all 1,024 length byte strings of those samples
comprised the support set. As well, the testing set was the
1,024 byte strings of two samples randomly sampled from
each family in the training data. All samples were randomly
chosen uniformly to best represent the corpus of malware
without adding any selection bias. Two datasets were required
for testing the Mecha system. These sets where testing-2022-
q1, and testing-2022-q2. These datasets were malware samples
identified in the first and second quarter of 2022 respectively.
As previously stated, all of the malware used for training and
evaluating the efficacy of the Mecha system was separated to
better simulate a real-world environment. Two separate testing
sets were required due to the nature of the Mecha system.
The Mecha system required a support set of samples that
were stored for matching. We used the testing set from the
first quarter of the year as the support set, and we tested the
matching ability of the Mecha system on the second quarter
dataset. These two datasets were further separated between
in-sample and out-of-same families from the data. As stated,
the training dataset, training-2021, contained 175 families of
malware. The in-sample testing datasets, testing-2022-q1-in,
and testing-2022-q2-in contained samples from 25 families
that were sampled from the 175 training families. The out-
of-sample testing datasets, testing-2022-q1-out, and testing-
2022-q2-out contained malware samples from 25 families that
were not in training-2021. Please refer to Table III for the list
of families, as well as a number of samples per family used in
the testing-2022-q1, and testing-2022-q2 sets. It is important
to note that there is no overlap in distinct malware samples
between all of the discussed datasets.
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TABLE III
LIST OF FAMILIES USED IN THE IN-SAMPLE AND OUT-OF-SAMPLE SETS. THE NOTATION IS : FAMILY NAME (NUMBER OF SAMPLES IN Q1 SET, NUMBER

OF SAMPLES IN Q2 SET).

In-sample Families - Total (6278, 2955)
agenttesla (3679, 1658) snakekeylogger (1097, 600) avemariarat (413, 227) nanocore (314, 157) njrat ( 312, 110) gozi (86, 38)
coinminer (86, 18) yellowcockatoo (39, 30) coinminer.xmrig (37, 2) tofsee (28, 12) zeus (19, 7) danabot (19, 15)
trickbot (18, 17) urelas (17, 4) a310logger (17, 12) virlock (12, 11) matanbuchus (8, 7) runningrat (8, 3)
ircbot (7, 6) cryptbot (7, 4) sodinokibi (7, 7) chaos (7, 3) dridex (6, 3) blackshades (6, 2)
kutaki (2, 2)
Out-of-sample Families - Total (756, 504)
smoke loader (310, 120) resur (114, 114) emotet (50, 50) triusor (47, 47) evora (36, 36) emotet b (28, 28)
lockbit (19, 2) parite (18, 18) babdeda (17, 6) blackguard (11, 2) bitter (11, 11) ursnif (11, 11)
vovabol (11, 11) ketrican (9, 9) dtrack (9, 9) shifu (7, 4) mydoom (6, 4) qqpass (5, 5)
babuk (3, 3) berbew (3, 3) fathula (3, 3) blister (2, 2) vobfus (2, 2) thanos (2, 2)
blackout (2, 2)

Corpus of Malware Corpus of Benignware

B
B
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Identified in quarter two
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(variants from
families not used in
training)

Fig. 6. A visualization of the datasets required for training and testing the
Mecha system. The set training-2021 was used for training the Mecha system.
The quarter one sets were used as support sets in the experiments, and the
quarter two sets were used as testing sets in the experiments.

B. Benchmarks

The Mecha system was compared against 14 other methods
for the family matching experiments. Three of the methods
were the Malkov and Yashunin approximate nearest neighbour
algorithm, [21], with different input data. The input data
tested with [21] was raw malware byte string, L2 normalized
malware byte string, and average pooled malware byte string.
These benchmarks were chosen as a method of comparing
the entire Mecha system against different subcomponents
of the Mecha system used together. As well, we compared
Mecha against two models similar to the Mecha network with

varying input dimensions. The input dimensions chosen were
512 and 256. These models were referred to as Mecha-512
and Mecha-256, respectively. These models were compared
against Mecha to evaluate the performance difference of using
varying input sizes. Five popular ML classifiers were also
implemented to compare against the Mecha system. The ML
methods compared against the Mecha system were Quadratic
Discriminant Analysis (QDA) [31], Ada Boost [32], Decision
Tree [33], Random Forest [34], and Gaussian Naive Bayes
(NB). We compared these methods to ensure the Mecha
system had a higher performance than conventional state-of-
the-art ML-based classifiers. It is important to note that these
five benchmarks were not originally developed for malware
family classification but have shown great success in many
classification tasks. Unlike these methods, the Mecha system
has been optimized specifically for the task of malware family
similarity analysis. As well, we compare the Mecha system
against the similarity hashing method ssdeep [16]. The ssdeep
method is used in many industry malware detection systems,
and we compared Mecha against ssdeep to further observe
real-world viability. The ssdeep solution performed a pairwise
comparison between the incoming sample and the support set.
The results for the pairwise comparison were used to build a
distribution for the family classification of the malware sample
based on the highest similarity score between the incoming
sample and each family. The Siamese-based malware similar-
ity networks proposed by Hsiao et al. and Conti et al. were
implemented to compare classification ability in Siamese net-
works depending on input data, and output dimensional. These
benchmarks especially compared the ability of the embedding
network compared to Mecha. As well, these benchmarks used
a single modality input similar to Mecha. It is important to
note that these two networks have an input of two sample
images and output a single similarity score [14], [15], this is
in contrast to the single sample input of the deployed Mecha
system. Due to this, the comparison between a single testing
sample, and the entire support set required significantly more
time than all other methods used in the experiments. Finally,
the Mecha.emb, and Mecha.match systems were compared
to the full Mecha system as an ablation test to determine
the effect of the Mecha.gen EM training on the classification
ability of the Mecha system. All matching algorithms were
given a 24-hour time limit for inference, after that, all results
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TABLE IV
RESULTS ON THE MATCHING OF testing-2022-q2-in ON testing-2022-q1-in. THE METRICS REPORTED ON THIS TABLE DESCRIBE THE PERFORMANCE OF

DIFFERENT MODELS ON THE IN-SAMPLE TESTING DATA. GIVEN A SUPPORT SET OF MALWARE SAMPLES (testing-2022-q1-in) FROM FAMILIES WITHIN THE
TRAINING DATA, THE MODELS WERE TASKED WITH PREDICTING THE FAMILIES OF THE TESTING SET (testing-2022-q1-in).

Baseline AUC Accuracy F1 Precision Recall Optimal Threashold Mean Embedding Distance Sample Inference Time (seconds)

QDA [31] 0.8412 0.8133 0.2719 0.1611 0.8714 0.0169 ⇠ 1.2825
Ada Boost [32] 0.7681 0.9586 0.5199 0.4844 0.5611 0.1111 ⇠ 0.1087
Decision Tree [33] 0.7914 0.9619 0.5601 0.5206 0.6061 0.0011 ⇠ 0.0276
Random Forest [34] 0.7714 0.9649 0.5611 0.5611 0.5611 1.0000 ⇠ 0.0327
Gaussian NB 0.6233 0.6205 0.1166 0.0643 0.6264 0.0017 ⇠ 0.0823
ssdeep [16] 0.9861 0.9820 0.8149 0.6921 0.9905 0.2494 ⇠ 0.0127
HNSW [21] 0.9016 0.8362 0.3221 0.1930 0.9726 0.0225 4107985.532 0.5016
L2 + HNSW [21] 0.9479 0.9246 0.5082 0.3439 0.9733 0.0737 0.2471 0.6679
Average Pooling + L2 + HNSW [21] 0.9794 0.9741 0.7528 0.6091 0.9851 0.1116 0.0361 0.2078
Hsiao et al. [14] 0.5072 0.2051 0.2752 0.1609 0.9500 0.4981 ⇠ 10.4836
Conti et al. [15] 0.5000 0.6255 0.0000 0.0000 0.0000 2.0000 ⇠ 13.0884
Mecha.emb + Mecha.match 0.9529 0.9436 0.5773 0.4122 0.9631 0.1055 0.3375 0.5096
Mecha-256 0.8409 0.8813 0.3495 0.2238 0.7970 0.0154 0.7801 0.3233
Mecha-512 0.9914 0.9841 0.8337 0.7152 0.9993 0.1430 0.0067 0.4636

Mecha 0.9982 0.9984 0.9804 0.9634 0.9980 0.3185 0.0040 0.6150

TABLE V
RESULTS ON THE MATCHING OF testing-2022-q2-out ON testing-2022-q1-out. THE METRICS REPORTED ON THIS TABLE DESCRIBE THE PERFORMANCE OF

DIFFERENT MODELS ON THE OUT-OF-SAMPLE TESTING DATA. GIVEN A SUPPORT SET OF MALWARE SAMPLES (testing-2022-q1-out) FROM FAMILIES
OUTSIDE THE TRAINING DATA, THE MODELS WERE TASKED WITH PREDICTING THE FAMILIES OF THE TESTING SET (testing-2022-q1-out).

Baseline AUC Accuracy F1 Precision Recall Optimal Threashold Mean Embedding Distance Sample Inference Time (seconds)

QDA [31] 0.9894 0.9924 0.9119 0.8481 0.9861 0.2719 ⇠ 0.7909
Ada Boost [32] 0.7136 0.8298 0.2163 0.1326 0.5873 0.0019 ⇠ 0.0423
Decision Tree [33] 0.6532 0.9329 0.2941 0.254 0.3492 0.0154 ⇠ 0.0100
Random Forest [34] 0.6377 0.9415 0.2961 0.2855 0.3075 0.2127 ⇠ 0.1074
Gaussian NB 0.6262 0.5452 0.1116 0.0605 0.7143 0.0116 ⇠ 0.0397
ssdeep [16] 0.9993 0.9987 0.9834 0.9674 1.0000 0.4831 ⇠ 0.0015
HNSW [21] 0.9748 0.9552 0.6403 0.4718 0.996 0.0667 4520590.163 0.1389
L2 + HNSW [21] 0.9209 0.8829 0.3966 0.2497 0.9623 0.0222 0.3297 0.0431
Average Pooling + L2 + HNSW [21] 0.9669 0.9638 0.6820 0.5258 0.9702 0.1760 0.0741 0.0197
Hsiao et al. [14] 0.5072 0.2051 0.2752 0.1609 0.9500 0.4981 ⇠ 10.4836
Conti et al. [15] 0.5000 0.8412 0.0000 0.0000 0.0000 2.0000 ⇠ 1.8012
Mecha.emb + Mecha.match 0.9520 0.9260 0.5146 0.3489 0.9802 0.0625 0.3538 0.0615
Mecha-256 0.6145 0.6705 0.1185 0.0663 0.5536 0.0166 0.7723 0.0720
Mecha-512 0.9974 0.9986 0.9824 0.9691 0.9960 0.3984 0.0407 0.0668

Mecha 0.9980 0.9962 0.9545 0.9130 1.0000 0.3485 0.0073 0.0822

are predicted as 0. For comparing the different methods in our
experiments, we used the metric Area under the ROC curve
(AUC), accuracy, precision, recall, and F1-Score. As well, all
metrics were calculated with the optimal threshold determined
by maximizing the Youden’s J statistic of the ROC curve.

C. RQ1
The first two experiments we conducted on the Mecha

system validated the generalizability of the Mecha system. We
performed a simulated real-world malware triage environment
using the testing-2022-q1 dataset as stored data and the testing-
2022-q2 dataset as new incoming samples. We performed this
experiment twice, first with the in-sample data, and then with
the out-of-sample data. Along with verifying that the Mecha
system can reliably match unseen malware to the correct
family, this experiment verified that the Mecha training process
did not overfit the Mecha.emb network to the training families.
These experiments are referred to as in-sample generalizability
and out-of-sample generalizability.

The results for the two generalization experiments can be
seen in Table IV and Table V. As can be seen from Table IV,
Mecha performed exceptionally well at classifying the trained
malware families, with an AUC of 0.9982 and accuracy of
0.9984 on the in-sample set. This clearly showed Mecha’s
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Fig. 7. Family matching by Mecha on the in-sample data (samples that are
variants in training families, but were not used in training). These results
correspond to the performance of the Mecha system shown in Table IV.
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Mecha Results on Matching testing-2022-q2-out to testing-2022-q1-out

Fig. 8. Family matching by Mecha on the out-of-sample (samples that
are variants of families not used in network training) data. These results
correspond to the performance of the Mecha system shown in Table V.

ability to accurately match malware variants to the correct
family. As well, it can be seen that the ablation test showed
performance enhancement from training in the Mecha.gen
generalization RL environment. For F1, precision, and recall,
the Mecha system performed very well with high results in
all metrics. This further showed the balance of Mecha when
matching correct samples as well as indicating when two
samples are not from the same family. For sample inference
time, the fastest model was the ssdeep baseline with a sample
inference time of 0.0127 seconds compared to a sample
inference time of 0.6150 seconds for Mecha. It can also be
seen that the embeddings from the Mecha system had a sig-
nificantly lower mean embedding distance than other distance-
based evaluation tools, further demonstrating the embedding
power of the Mecha.emb and Mecha.gen training. Compared
to Mecha-256 and Mecha-512, Mecha performed the best
with an AUC of 0.9980. It is interesting to note performance
did not decrease significantly between Mecha and Mecha-
512 (AUC of 0.9914), but the performance of Mecha-256
(AUC of 0.8409) was very poor compared to the other two
Mecha models. Further, it can be seen that the ssdeep baseline
performed very well against the in-sample set with an AUC
of 0.9861 and an accuracy of 0.9820. These results were very
similar to the Mecha results. The similarity in results further
showed the real-world viability of the Mecha system. The
classification of each malware family by the Mecha system on
the in-sample data can be seen in Fig. 7. As can be seen from
Fig. 7, the only families with a significant mismatch of samples
were the a310logger family and the coinminer family. For the
out-of-sample data, Mecha performed very well with an AUC
of 0.9980 and accuracy of 0.9962. These results were very
similar to the ssdeep solution which had an AUC of 0.9993
and an accuracy of 0.9987. Further, the results of Mecha were

similar to the results of Mecha-512, which had an AUC of
0.9974 and an accuracy of 0.9986. It is interesting to note
that the accuracy of Mecha-512 was higher than Mecha. Also,
similar to in-sample testing, the Mecha-256 system performed
very poorly with an AUC of 0.6145 and accuracy of 0.6705.
The two generalization experiments showed that using an input
size of 512 did not affect model performance significantly,
but using an input size of 256 dramatically decreased model
performance. Similar to the in-sample test, the Mecha system
had the shortest mean embedding distance. It is important to
note that the Mecha system did not have the lowest sample
inference time. The solution with the lowest sample inference
time was the ssdeep method with an inference time of 0.0015
seconds per sample. The matching results on the out-of-sample
data can be seen in Fig. 8. From the heatmap, it can be seen
that only the MyDoom family was significantly misclassified
with a match accuracy of 0.75. Referring to RQ1, these results
clearly show that the Mecha system was able to identify
malware samples that are known to the support set.

D. RQ2
The second two experiments validated the zero-day de-

tection ability of the Mecha system. The third experiment
validated zero-day family detection as a binary classification
problem. Given a sample, the Mecha system was tasked with
classifying the malware as either known or unknown. The
fourth experiment validated the zero-day family detection
in a full malware triage simulation environment. Given an
incoming sample, Mecha was tasked with categorizing the
sample into a known malware family or categorizing the
sample as unknown. For these experiments, the testing-2022-
q1-in dataset was the simulated stored data, and both the
testing-2022-q2-in and testing-2022-q2-out datasets were the
new incoming samples.

Table VI shows the results for the zero-day detection as
a binary classification problem experiment. As can be seen,
the Mecha system outperformed all baselines significantly in
this experiment. As well, the Mecha system had an AUC of
0.9962 and an accuracy of 0.9977 making the model almost
perfect at detecting if an incoming sample was known to the
system or not. Also, the F1, precision and recall are all almost
1 with the lowest of the three being precision with a score of
0.9901. This is in contrast to the ssdeep benchmark, which
had an AUC of 0.5 and an accuracy of 0.8543. This low
AUC was caused by the lack of an unknown mechanism in the
ssdeep benchmark. Compared to the varying input dimension
benchmarks, Mecha had a slightly better performance. Where
Mecha-256 and Mecha-512 had AUC of 0.9745 and 0.9723,
respectively, Mecha had an AUC of 0.9962. Similar to previous
experiments, the sample inference time for Mecha was half a
second on average.

Table VII shows the results of the zero-day family matching
experiment. The Mecha system showed the best performance
with an AUC of 0.9978 and accuracy of 0.9979. As well,
the F1 precision, and recall, were all above 0.95, with the
lowest metric being precision with a score of 0.9512. These
results were similar to, but better than the results of Mecha-
256 and Mecha-512. Mecha-512 had an AUC of 0.9849 and
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TABLE VI
RESULTS FROM THE ZERO-DAY PREDICTION EXPERIMENT. THE METRICS ON THIS TABLE DESCRIBE THE PERFORMANCE OF THE MODELS AT THE TASK

OF CLASSIFYING IF AN INCOMING SAMPLE IS FROM A ZERO-DAY FAMILY. GIVEN A SUPPORT SET OF MALWARE SAMPLES (testing-2022-q1-in), THE
MODELS ARE TASKED TO PREDICT IF INCOMING SAMPLES ARE FROM KNOWN OR UNKNOWN FAMILIES IN THE testing-2022-q2-in AND testing-2022-q2-out

SETS. IF THE INCOMING SAMPLE IS OUTSIDE OF A GIVEN THREASHOLD (⌧ ) TO ITS CLOSEST NEIGHBOUR, IT IS PREDICTED AS UNKNOWN.

Baseline AUC Accuracy F1 Precision Recall Optimal Threashold Mean Embedding Distance Sample Inference Time (seconds)

QDA [31] 0.5000 0.8543 0.0000 0.0000 0.0000 1.0000 ⇠ 1.2087
Ada Boost [32] 0.5000 0.8543 0.0000 0.0000 0.0000 1.0000 ⇠ 0.0806
Decision Tree [33] 0.5000 0.8543 0.0000 0.0000 0.0000 1.0000 ⇠ 0.0231
Random Forest [34] 0.5000 0.8543 0.0000 0.0000 0.0000 1.0000 ⇠ 0.0309
Gaussian NB 0.5000 0.8543 0.0000 0.0000 0.0000 1.0000 ⇠ 0.0721
ssdeep [16] 0.5000 0.8543 0.0000 0.0000 0.0000 1.0000 ⇠ 0.0117
HNSW [21] 0.5000 0.8543 0.0000 0.0000 0.0000 1.0000 4265060.999 0.4478
L2 + HNSW [21] 0.5000 0.8543 0.0000 0.0000 0.0000 1.0000 0.2619 0.4382
Average Pooling + L2 + HNSW [21] 0.5000 0.8543 0.0000 0.0000 0.0000 1.0000 0.0509 0.1834
Hsiao et al. [14] 0.5000 0.0000 0.0000 0.0000 0.0000 1.0000 ⇠ 1.4371
Conti et al. [15] 0.5000 0.0000 0.0000 0.0000 0.0000 1.0000 ⇠ 1.8335
Mecha.emb + Mecha.match 0.6890 0.8103 0.4431 0.3872 0.5179 0.9548 0.3627 0.4534
Mecha-256 0.9745 0.9720 0.9104 0.8515 0.9782 0.0960 0.0076 0.5453
Mecha-512 0.9723 0.9737 0.9149 0.8655 0.9702 0.3156 0.0197 0.4121

Mecha 0.9962 0.9977 0.9921 0.9901 0.9940 0.3915 0.0064 0.5031

TABLE VII
RESULTS FROM THE FAMILY CLASSIFICATION WITH ZERO-DAY SAMPLES EXPERIMENT. THE METRICS ON THIS TABLE DESCRIBE THE PERFORMANCE OF

THE MODELS AT THE TASK OF CLASSIFYING ALL INCOMING SAMPLES TO A SPECIFIC FAMILY, OR AS UNKNOWN. GIVEN A SUPPORT SET OF MALWARE
SAMPLES (testing-2022-q1-in), THE MODELS ARE TASKED TO CATEGORIZE THE INCOMING SAMPLES IN THE testing-2022-q2-in AND testing-2022-q2-out

SETS. IF THE INCOMING SAMPLE IS OUTSIDE OF A GIVEN THREASHOLD (⌧ ) TO ITS CLOSEST NEIGHBOUR, IT IS CATEGORIZED AS UNKNOWN.

Baseline AUC Accuracy F1 Precision Recall Optimal Threashold Mean Embedding Distance Sample Inference Time (seconds)

QDA [31] 0.8332 0.7977 0.2274 0.1308 0.8714 0.0169 ⇠ 1.2087
Ada Boost [32] 0.7659 0.9566 0.4692 0.4032 0.5611 0.1111 ⇠ 0.0806
Decision Tree [33] 0.7895 0.9603 0.5105 0.4410 0.6061 0.0011 ⇠ 0.0231
Random Forest [34] 0.7698 0.9642 0.5170 0.4793 0.5611 1.0000 ⇠ 0.0309
Gaussian NB 0.6114 0.5684 0.0943 0.0508 0.6575 0.0013 ⇠ 0.0721
ssdeep [16] 0.9872 0.9840 0.8090 0.6837 0.9905 0.2494 ⇠ 0.0127
HNSW [21] 0.8990 0.8383 0.2895 0.1703 0.9641 0.0251 4265060.999 0.4478
L2 + HNSW [21] 0.9379 0.8973 0.3952 0.2474 0.9814 0.0588 0.2619 0.4382
Average Pooling + L2 + HNSW [21] 0.9719 0.9637 0.6485 0.4845 0.9807 0.1060 0.0509 0.1834
Hsiao et al. [14] 0.5000 0.6801 0.0000 0.0000 0.0000 2.0000 ⇠ 1.4371
Conti et al. [15] 0.5000 0.9769 0.0000 0.0000 0.0000 2.0000 ⇠ 1.8335
Mecha.emb + Mecha.match 0.9669 0.9423 0.5699 0.3995 0.9936 0.0051 0.3627 0.4534
Mecha-256 0.9923 0.9940 0.9272 0.8715 0.9905 0.1980 0.0076 0.5453
Mecha-512 0.9849 0.9800 0.7917 0.6595 0.9902 0.2104 0.0197 0.4121

Mecha 0.9978 0.9979 0.9739 0.9512 0.9977 0.3056 0.0064 0.5031

an accuracy of 0.9800. Mecha 256 had an AUC of 0.9923
and an accuracy of 0.9940. These results further showed that
1024 is the optimal input dimension of the three tested. The
model that performed the third best was ssdeep with an AUC
of 0.9872 and accuracy of 0.9840. This was a better result
than the ablation Mecha.emb + Mecha.match, but still not
as accurate as the entire Mecha system. It is important to
note the large difference in performance between most of the
models in the binary classification and the family matching
experiment. For the family matching, many models previously
showed an ability to classify known families, which is causing
high success in the zero-day family matching experiment. It
shows in the binary classification experiment that almost all
of the models have little to no ability to detect if a sample
is known or unknown to the model. The classification of the
families in the zero-day experiment can be seen in Fig. 9. As
can be seen, almost all of the unknown samples (0.9780) were
correctly classified as unknown. The other unknown samples
were classified as the Danabot family.

E. RQ3
The fifth experiment we conducted on the Mecha system

was to observe how Mecha performed with varying sizes

TABLE VIII
RESULTS OF MECHA ON THE MATCHING OF testing-2022-q2-in ON

testing-2022-q1-in WITH A VARYING SUBSET OF FAMILIES.

Total Families AUC Accuracy F1 Precision Recall

25 0.9982 0.9984 0.9804 0.9634 0.9980
20 0.9993 0.9991 0.9911 0.9827 0.9996
15 0.9994 0.9988 0.9913 0.9827 1.0000
10 1.0000 1.0000 1.0000 1.0000 1.0000

of malware families. The purpose of this experiment was to
determine whether family size affected Mecha’s performance.
In this experiment, we recreated the first experiment of in-
sample family matching with a varying number of malware
families. Originally, there were 25 families in the in-family
set. Subsets of sizes 20, 15, and 10 were used to observe
the performance of Mecha with varying family set sizes. It is
important to note that larger subsets contain all the families
used in the smaller subsets. The subset families were sampled
randomly without replacement.

The results for the family size experiment can be seen in
Table VIII. As can be seen, the size of the family appeared
to be directly related to the performance of Mecha. As the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2023 14

snakekeylogger
cryptbot
dridex
tofsee
coinm

iner.xm
rig

ircbot
a310logger
blackshades
avem

ariarat
urelas
agenttesla
chaos
gozi
nanocore
yellow

cockatoo
kutaki
m

atanbuchus
unknow

n
njrat
sodinokibi
zeus
runningrat
virlock
trickbot
coinm

iner
danabot

danabot
coinminer

trickbot
virlock

runningrat
zeus

sodinokibi
njrat

unknown
matanbuchus

kutaki
yellowcockatoo

nanocore
gozi

chaos
agenttesla

urelas
avemariarat

blackshades
a310logger

ircbot
coinminer.xmrig

tofsee
dridex

cryptbot
snakekeylogger

0

0.2

0.4

0.6

0.8

1

Mecha Results of Zero-day Family Classification

Fig. 9. Family matching by Mecha in zero-day family matching experiment.
These results correspond to the performance of the Mecha system shown in
Table VII.

total number of families decreased toward 0, the performance
metrics increased to 1. It is interesting to note that the accuracy
of Mecha for classifying malware into 20 families (0.9991)
was higher than the accuracy of Mecha classifying malware
into 15 families (0.9988).

F. Further Evaluation
For further evaluation on the ablation study between

Mecha.emb + Mecha.match compared to the entire Mecha
system, the ROC curves for the two models in the four
experiments can be seen in Fig. 10. As can be seen from
the graphs, the Mecha system is much closer to an ideal curve
than the ablation model. This further validates the aid in model
training the reinforcement learning environment provides to
the Mecha system.

Outside of the solutions proposed by Hsiao et al. and
Conti et al. all solutions completed inference time for each
experiment within the 24-hour limit. It can be observed that
the Mecha system did not perform the fastest in experi-
ments for sample inference. Although some solutions, such
as ssdeep [16], Ada Boost [32], Decision Tree [33], Random
Forest [34], and Gaussian NB perform sample inference sig-
nificantly faster than Mecha, there is a decrease in solution
performance. Further, for the ssdeep solution there exists the
problem of scalability. The ssdeep solution required a linear
search of the support set for each sample in the testing set.
This linear search had a complexity of O (n) where n is the
size of the support set. Whereas the Mecha solution used
an approximate nearest neighbour search for each sample in
the testing set, which had a search complexity of O (log (n))
where n is the size of the support set. Although the sample
inference time was faster in our experiments, at a larger scale
ssdeep inference time will increase dramatically compared to

Mecha. It is important to note that due to the complexity
of the Mecha system, training time was significatly longer
than other solutions. Training time was not restricted in our
experimentation.

VII. RELATED WORKS

Due to the constantly evolving landscape of attack methods,
and the vast amount of new malware each day, it is impossible
for humans to detect and categorize malware on their own.
With recent advancements in artificial intelligence (AI) and
ML, learned algorithms have been proposed for solving prob-
lems in CTI [13], [19], [24], [35]–[39]. The features used for
malware detection in ML can be separated into the categories
of static analysis and dynamic analysis [40]. Dynamic analysis
involves running a software sample in a sandbox environment
and examining the behaviour, whereas static analysis aims
to determine if a sample is malicious or benign based on
analyzing the code or structure [40]. A popular feature for
static malware detection is raw byte sequences [13], [24],
[35]. Raw byte sequences have been used in previous works
with convolution neural networks for the task of malware
detection [13], [24], [35]. To expand from malware detection,
static analysis has also shown success in malware similarity
analysis using DL models. A popular DL method that has
shown recent success is the Siamese Neural Network.

The Siamese Neural Network Architecture is a method
of learning for similarity analysis. Siamese networks learn
through either a twin or triplet learning algorithm [23], [41],
[42]. The Siamese network was first proposed in the work
by Bromley et al. where the twin Siamese network was pro-
posed for measuring the similarity between human signatures
written on a pen-input tablet [42]. The work of measuring
the similarity between two images was applied to a more
broad image similarity problem by Koch et al. [41]. In their
work, Koch et al. showed a twin Siamese network could
be used for comparing images in similarity from categories
that only contain a single sample in the training data (One-
shot classification). The work of Koch et al. has led to
the application of twin Siamese networks in many domains,
including malware similarity analysis [14], [15]. The twin
Siamese network was expanded to the triplet in [23] with
FaceNet. FaceNet is a convolution neural network trained to
generate embeddings for face images that could be compared
by L2-distance [23].

Similar to recent works which use Siamese-based archi-
tectures for software similarity analysis [7], [8], [13]–[15],
[22], we use static features extracted from the code base of
the malware sample. Rather than using image representations
of malware executables [7], [8], [14], [15], [43], or features
extracted from reverse engineering techniques [13], [22], we
use raw byte sequences directly from malware samples to
generate embedding representations.

The Siamese network architecture has been used for classi-
fying malware into a discrete set of malware families [7], [8].
These networks are fitted with a Softmax activation head. The
Softmax activation head is used to classify the two samples
into the discrete set of malware families that are in the
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Fig. 10. ROC curves from the four experiments. In all curves, the Mecha system is blue, and the Mecha.emb + Mecha.match model is in red. The optimal
ROC curve would have an area of 1.0 under it.

training data. Zhu et al. proposed a twin Siamese network
with a Softmax activation head for ransomware detection and
classification. This method showed success at the few-shot
classification of ransomware families [7]. Chen et al. furthered
the work of Softmax-activated networks by designing a multi-
head network that would output a family classification, as well
as an embedding for similarity analysis [8].

The works of [14] and [15] used a Twin Siamese architec-
ture for malware similarity scoring. Given an unknown sample
and a support set, a similarity score is found for each support
sample with the unknown sample. The unknown sample is
classified into the same family as the support sample with the
highest similarity. Siamese architectures have been shown to
work well in few-shot and one-shot learning paradigms [14].
Where conventional ML requires multiple samples in each
class, few-shot learning is the method of using a few samples
for each category in a classification task. Following this, one-
shot learning uses a single sample in a class for network
training. Few-shot and one-shot learning have been shown to
work well in malware similarity analysis and family classifi-
cation [14], [44]. Hsiao et al. proposed a system for finding
the similarity between two malware samples [14]. Using byte-
to-pixel images of malware samples as input, Hsiao et al.
showed the deep framework proposed in [41] could be applied
to the problem of malware similarity scoring. Conti et al.
proposed a multi-network system that would find the similarity
score on two malware samples based on a three-channel image
(Gray-level matrix image + Entropy graph image + Markov
image) [15]. Following Few-shot and One-shot training, the
Mecha system has been shown to work well in classifying
samples not used in model training. This shows that Mecha is
successful at Zero-shot testing.

The work of [13] explored the method of generating em-
beddings for storage and similarity analysis like the work
of [23]. In their work, Molloy et al. proposed a Generative
Adversarial Network for malware embedding generation with
reconstruction [13]. Like the work of [15], Molloy et al. used
multiple static feature vectors from a single malware sample
as input to their network. Instead of using different image
modalities, Molloy et al. used five features extracted from each
sample through static analysis (byte code + import text + string
text + byte image + byte image signature) [13].

A conventional method for comparing software samples is

through similarity hashing [17], [18], [45]. Similarity hashing
is the method of hashing rolling blocks of a sample and
comparing blocks through an edit distance to find a similarity
score [16]. A popular similarity hashing tool proposed by Ko-
rnblum is ssdeep [16]. Similarity hashing tools such as ssdeep
have been shown to aid in malware family classification [17],
[18].

Similarity hashing tools have been shown to aid ML-based
malware analysis systems. Edir [17] proposed a three-step
process for malware classification, which involved similarity
hashing and supervised learning for malware detection. The
approach aimed to reduce the input size for machine learning
classifiers by converting the full binary sequence into a single
hash, thus avoiding the high computational cost of processing
the entire binary at once. However, our proposed learning
method is designed to directly process the full binary sequence
without overburdening the machine learning model, as it
is optimized through a two-stage process. Additionally, our
goal focused on identifying similar samples at scale, whereas
Edir’s [17] objective was to determine which part of the
similarity hash contributes more significantly to the detection
of maliciousness. Botacin et al. have also proposed a solution
to malware detection and classification that utilizes similarity
hashing and ML [18]. In their work, Botacin et al. propose a
method of clustering similarity hashes and classifying software
through centroid comparison. DBSCAN was used to generate
cluster centroids to decrease classification time by comparing
similarity to cluster centroids only [18]. Our work differs from
the work of Botacin et al. Because the Mecha system has been
designed for similarity analysis only, as well, our work allows
for open-set classification, whereas the work of Botacin et al.
used a set of cluster centroids for classification. Incremental
updates to DBSCAN clusters are challenging in practice due
to ongoing concept drift in the underlying data. In contrast,
approximate nearest neighbour search methods for embedding
space offer finer search granularity in cases of concept shift
and serve as more robust update methods.

VIII. CONCLUSION

In this work, we proposed Mecha, the first multi-ML system
for malware variant matching with zero-day family detection.
We utilized Siamese learning, as well as reinforcement learn-
ing for developing an embedding network that outperforms
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the state-of-the-art. As well, we built on HNSW to create an
open set approximate nearest neighbour system for embedding
family matching. We showed through multiple experiments
that the Mecha system is generalized to in-sample and out-of-
sample malware families, and can accurately categorize sam-
ples into known families with zero-day detection functionality.
A limitation of the Mecha system is that it has only been
designed for Windows PE malware. With the growing interest
in Internet of Things (IoT) infrastructure, future work includes
testing the proposed methods against IoT malware [46]. Zero-
day attack detection has already been shown to be successful
against IoT malware [47], and future work includes building
on the Mecha system to combat IoT malware.
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