
Adversarial Variational Modality Reconstruction
and Regularization for Zero-Day Malware Variants

Similarity Detection

Christopher Molloy∗, Jeremy Banks∗, Steven H. H. Ding∗, Philippe Charland†, Andrew Walenstein‡, and Litao Li∗
∗School of Computing, Queen’s University, Kingston, Canada.

Emails: {chris.molloy, steven.ding, jeremy.banks, litao.li}@queensu.ca
†Mission Critical Cyber Security Section, Defence R&D Canada - Valcartier, Quebec, QC, Canada.

Email: philippe.charland@drdc-rddc.gc.ca
‡BlackBerry Limited, Waterloo, ON, Canada.

Email: awalenstein@blackberry.com

Abstract—Matching malware variants in the same malware
family has always been a significant challenge for Cyber Threat
Intelligence (CTI). For zero-day malware that does not belong to
an existing family, a timely matching of its variants is essential
for effective threat tracing and prompt response to the cyber
incident. However, malware variants are of diverse forms that
make them difficult to match. Additionally, the information
extracted from a given malware sample is inaccurate, especially
on zero-day malware. Existing malware solutions only focus on
detecting known malware or find if two samples are similar
without creating any reusable representation of the samples. In
this paper, we propose the first practical and efficient solution
for zero-day malware variant matching with reconstruction.
By combining multi-modality learning and a Siamese-based
structure, our model can navigate across different modalities
and match zero-day variants. To address the missing or noisy
modality issue, we propose a Conditional Variable Autoencoder
with a Generative Adversarial Network for heightened resolution.
We trained the model on 100,000 malware triplet pairs. Our
experiments on real-world noisy samples show that the model
out-performs the state-of-the-art and can accurately match not
only zero-day malware, but also out-of-sample benign binaries
of the same category.

Index Terms—Cyber-security, Deep Learning, Mining hetero-
geneous data.

I. INTRODUCTION

The cyber world has seen a flood of exponentially increas-
ing malware attacks. According to the AV-TEST Institute,
there were 90.77 million new malware samples observed on
Windows-based systems in 20201. Many of these malware
samples are unique, as variants to existing malware families
or new malware strains. Matching and finding similar variants
of an existing malware family and grouping malware variants
from a new (zero-day) malware family have become increas-
ingly critical for a prompt cyber malware incident response
and effective threat tracing.

Malware samples are grouped into families based on
their observed behaviors and revealed functionalities, and

1AV-TEST Institute Statistics - Malware Sample Distribution

similarity-based solutions are robust and have the potential
to handle unknown new families without retraining. However,
existing state-of-the-art solutions often overfits into the known
families due to limited information used, resulting in low per-
formance in unseen families [1]. Additionally, all the existing
solutions in this direction requires pair-wise comparisons for
each incoming sample, which is not scalable [1]–[3].

To address these limitations, MA This ensures the searching
process can scale with the amount of indexed malware. Rather
than looking at one set of features, our network utilizes multi-
modality learning to diversify the input information. To ad-
dress the noise introduced by malware anti-analysis techniques
such as custom packing and code obfuscation, we assume
modality inaccuracy and incompleteness. We propose a modal-
ity reconstruction mechanism leveraging conditional variable
autoencoder and generative minmax learning to improve the
model robustness over unseen families. This reconstruction
mechanism allows our system to learn from malware that
is corrupt or has been modified to evade detection. Our
system has shown to successfully classify zero-day variants of
malware families unknown to our network. It takes on average
only 10 seconds for information extraction and 1 millisecond
(in batch mode) for inference. The main contributions of this
paper are as follows:

• We combine multimodal learning on binary executa-
bles and a Siamese-based neural network architecture as
the first practical zero-day malware similarity detection
model.

• We propose a conditional variable autoencoder for modal-
ity reconstruction and regularisation to handle missing or
noisy modality issues in the zero-day malware samples.

• We train the model on real-life malware samples and eval-
uate it on out-of-sample malware families and benignware
under different categories. The experiment shows that our
model outperforms current state-of-the-art methods for
malware variant similarity analysis, and that the modality

https://www.av-test.org/en/statistics/malware/

reconstruction method is robust against the noisy modal-
ities in the testing samples.

II. HETEROGENEOUS MALWARE INFORMATION

Malware Image. With each malware sample being a raw byte
sequence, the malware sample can be reshaped into a square
image. Each byte is in the range of 0 to 255, which can be
interpreted as a gray-scale pixel. The pixels are padded with 0
to the length of the closest square, and are then arranged into
a 1 : 1 image. The image is down-sampled to the resolution of
a by a. The a value was 256 to match [4]. The image modality
gives our network a very high-level overview of each malware
sample that may otherwise not be possible from the other input
modalities.
Malware Image Signature. We use an image-based signature
as the second modality. We follow the method proposed by
Wong et al. [5] to generate a signature derived from relative
brightness in regions of the image. We choose a grid size of
b = 10, and a vector length c = 4.
String Information. Variants of the same family may not have
the same code appearance due to polymorphism. However,
since their high-level functions are the same, string values can
aid in malware analysis [6]. We remove a list of common
strings including API names, date format strings, and file
section titles.
Executable Imports. Binary executable malware samples also
leverage system API calls for certain functionalities such as
process injection, file encryption, and communications. Having
completely different objectives than benignware, the list of
APIs that a malware sample imports may contain critical
information about the objective of the malware [7].
Assembly Code. Additionally, we model the extracted as-
sembly code from the malware program. We use the open
source disassembler Ghidra to extract the assembly code2.
To reduce file-specific information, address-specific assembly
code instructions were removed during the modality extraction
process.

III. MULTI-MODALITY SIMILARITY LEARNING

Each malware modality is passed through a separate portion
of the network and collected together at the end. We denote
these sections of the network as subnetworks. A random non-
zero modality from the output of the subnetworks is chosen
to be reconstructed. The modalities are then sent through the
reconstruction subnetwork to predict the real values for the
noised modality tensor. The Mean Squared Error (MSE) from
the reconstruction is also incorporated into the total loss of
the network. The output of the network is then flattened, and
appended to the output of the reconstruction subnetwork. This
embedding is used for similarity analysis to determine the
angular loss of the network. An overview of the processes
is shown in Figure 1

2The Ghidra Disassembler

A. Modality Encoding

All three of the text modalities are separately tokenized into
integer vectors. We choose a vocabulary size of d = 1, 000 for
the strings and import modalities. For the assembly code we
choose a vocabulary size of f = 30, 000 and a sequence length
of e = 1, 000 for all three text modalities.

Our network takes the five previously discussed modalities
as input and outputs an embedding to be used for angular
similarity analysis. Before the denoising and reconstruction
portion of our network, it learns from each modality sepa-
rately. We will denote the image, image signature, strings,
imports, and code subnetworks as I(Yimage) : Ra×a → Rg ,
S(Ysignature) : Zb2∗c → Rg , T (Ystrings) : Re → Rg , P (imports) :
Re → Rg , and E(code) : Re → Rg respectively, where Y is
the incoming malware sample. The output of the subnetworks
are then collected in a stack, X ∈ R5×g . This stack is used
for reconstruction, and later is a part of the final output of the
network. We choose the output dimension of each subnetwork
to be g = 32.

Our image processing subnetwork I(Yimage) is defined as
follows. We will let Cr : Ra×a → Rh×h×i and Cs : Ra×a →
Rh×h×i denote two-dimensional convolution functions.The
two convolution results are then multiplied to create a gate.
This matrix is then reduced by P : Rh×h×i → Rq , a max
pooling function. The resulting matrix is then flattened to a
single real valued vector of length q and sent through a linear
transformation I(Yimage) =W imageP (Cr×Cs)+b

image. W image

and bimage are trainable parameters. We choose a convolution
output dimension of h = 253 and i = 8. We choose the
pooling reduction to be done on an r = 16 sized grid, thus
the output of the pooling and flattening is a vector of length
q = 1800.

Next we describe the image signature subnetwork,
S(Ysignature). First, our signature is mapped from its integer
values to a real valued representation by mapping function
ζsignature : Zb2×c → −1 < Rb2×c < 1. This real mapping
allows for a better representation of the signature. This map-
ping is then sent through a linear transformation to find the
embedding of the image signature. The embedding calculation
is defined as S(Ysignature) = W signatureζsignature(Ysignature) +
bsignature. W signature and bsignature are trainable parameters. These
parameters are trained though a perceptron in our network.

The three text modalities all pass through subnetworks with
the same structure, so we describe the general text modality
subnetwork. Initially, the text modalities are mapped from a
1-dimensional integer vector to a r dimensional real valued
vector. This mapping is done by ζ text : Ze → −1 < Re×r < 1.
We choose the expanded dimension for the mapping r = 16.
This mapping is then transformed to the subnetwork embed-
ding by a Gated Recurrent Unit (GRU). A recurrent unit was
chosen for processing the text modalities due to the importance
of the sequence at which these modalities appear in malware
samples. The output of the GRU is a vector of length g that
is the embedding of the text subnetwork. The calculation for
the GRU output is found in [8], and we denote it as stext

g . The

 https://ghidra-sre.org/

Feature Extraction

Malware
Image

Image
Signature

String
Values

Imported
Functions

Assembly
Code

Malware
Sample

Gated Conv

Pool

Dense

Embedding

Dense

Embedding Embedding Embedding

GRU GRU GRU

+
Stack

AnchorPostiveNegative

[0.12, 0.27, ..., 0.99]
[0.09, 0.17, ..., 0.98]
[0.10, 0.26, ..., 0.19]
[0.12, 0.25, ..., 0.19]
[0.11, 0.12, ..., 0.14]

[0.12, 0.27, ..., 0.99]
[0.09, 0.17, ..., 0.98]
[0.10, 0.26, ..., 0.19]

[0.11, 0.12, ..., 0.14]

[0.11, 0.23, ..., 0.19]

Dense Dense
[0.12, 0.25, ..., 0.19]

Dense [0.11, 0.23, ..., 0.21]

MSE

Dense

Dense

Flatten

LayerNorm

Fig. 1: After feature extraction the five modalities go through their respective subnetwork. The subnetwork outputs are grouped
and a random modality is chosen for reconstruction. The reconstruction is done by a Conditional Variable Autoencoder
subnetwork that is aided by a Generative Adversarial subnetwork. The result of the reconstruction is used to calculate the
MSE for further learning. All five modalities, as well as the five reconstructed modalities are collected together to create the
embedding of the sample

final outputs of the three text inputs are: T (Ystrings) = sstrings
g ,

P (Yimports) = simports
g , and E(Ycode) = scode

g .

B. Conditional Cross-Modality Reconstruction

In real-world malware triage environments, it is common for
the features extracted from incoming samples to be missing or
have some noise. To address this issue, our network has been
implemented with a Conditional Variable Autoencoder (C-
VAE) for modality reconstruction [9]. A C-VAE is an exten-
sion of a typical variable autoencoder. Variable autoencoders
are systems for generating encoded data from some latent
space. Autoencoders are systems that take some input x from
the space Rn and map it to a latent space with dimensionality
Rm where m < n. This mapping in latent space can then
be decoded back to the original data with error. Whereas a
traditional autoencoder encoding mapping to the latent space
is deterministic, variable autoencoders will map a distribution
based on the incoming sample to some latent space. This
difference in mapping allows variable autoencoders to be more
robust against overfitting, as well as perform well against noisy
or unseen data. This success against previously unseen data is
of great use to the domain of malware modality reconstruction
due to newly emerging variants and malware families. The
initial assumption of the C-VAE is that our input values x
have been generated from an unknown continuous random
variable β, and that there exists a posterior distribution for
β, q(β|x) = N(µ, σ). Where µ and σ are some mean and
standard deviation. Due to the reparameterization trick, we are
able to express β through a deterministic variable β = gϕ(ϵ, x)

where ϵ is some noise with a standard normal distribution,
and ϕ are the parameters of g. Since we are in the Gaussian
case for β, the transformation of β can be reparametrized as
gϕ(ϵ, x) = µ+ σ ∗ ϵ,where ϵ ∼ N(0, 1).

In the case of neural networks, differentiable multi-layer
perceptron’s (MLP) are used for approximating the probabilis-
tic encoder qϕ(β|x), which is the posterior to the generative
model pθ(x, β). Here, θ and ϕ are optimized through gradient
descent. With the assumption that β is Gaussian from above,
we know the posterior has a Gaussian distribution with an
approximately Gaussian covariance matrix [9]. The mean
and variance are approximated through MLPs. Through the
transformation described above, we estimate z(i,l) [9]. A third
MLP estimates the input value x(i) based on the estimation
function gϕ(ϵ(l), x(i))

The network design of our C-VAE is as follows. Once a
sample has been parsed through the modality subnetworks, it is
collected as a matrix X . The input to the C-VAE is X . One of
the five output vectors is randomly chosen to be reconstructed.
We will denote this chosen modality vector as x

(i)
true. The

four other modalities are then averaged together to create a
single one-dimensional vector of length g. The condition of
the specific training cycle is then appended to the end averaged
vector. This condition is a one dimensional one-hot vector
describing which modality is to be reconstructed. The length
of the one-dimensional vector is now g + 5. We denote this
vector as ψ. The Normal distribution of ψ is then approximated
by two MLPs. The first MLP is trained to approximate
the mean of the distribution, and the second is trained to

approximate the variance. These two linear transformations are
µ = Wmeanψ + bmean, and σ2 = W varianceψ + bvariance. Where
Wmean, bmean,W variance, and bvariance are trainable parameters.
Initially, to reduce the possibility of an exploding gradient,
W variance and bvariance are initialized to 0. The latent space
of the encoder, γ sets the dimensionality of the MLPs, so
µ, σ2 ∈ Rγ . For our network we choose a latent space of
γ = 4. β = µ+ σ2 ∗ ϵ is the latent space calculation where µ
and σ2 are the approximated distributions mean and variance,
and ϵ is an error vector generated from the standard normal
distribution.

The latent space vector β is decoded through an MLP. The
ouptut of the decoder, which is the final output of the C-
VAE, x(i)recon ∈ R32, is x(i)recon = W decodez + bdecode. Where
W decode and bdecode are trainable parameters of the decoder
MLP. The reconstruction of all modalities is then appended
with the other modalities to the end of X . This stack of 10
modalities is flattened, and the final output of the network.
This embedding can be used for similarity analysis and stored
as a representation of a malware sample. This embedding is a
single real valued vector with length 320.

We will now describe how we find the loss of the C-VAE.
The loss for the C-VAE is shown in Equation 1 where µi and
σ2
i are each of the means and variances in the latent space.

LC-VAE = −1

2

γ∑
i=1

(1 + σ2
i − µ2

i − σ2
i) (1)

On top of this, the MSE is also calculated between the
true modality and the reconstructed modality. The MSE is
calculated as MSE = (x

(i)
recon − x

(i)
true)

2.

C. Reconstruction through Minmax Learning

We have also implemented a Generative Adversarial Net-
work (GAN) for assisting reconstruction [10]. The purpose of
the GAN is to heighten the resolution of the modalities re-
constructed by the C-VAE process. This is done by predicting
whether an incoming modality is reconstructed or original. For
describing our GAN, we define our reconstruction subnetwork
as G(β) where the output is a reconstructed modality vector
based on the latent space vector β. We will now define a
second subnetwork D(x) where the output is a single scalar
representing the probability that the input value x is an original
embedding and not a reconstructed embedding. D is trained on
correctly assigning the reconstructed label to the reconstructed
data. Along with the original loss propagated through G(β),
G(β) is also trained to minimize the success of D(x) as
log(1 − D(G(β)).These two trainings can be thought of as
a game between two parties. We describe this minimax game
with value function V (G,D) in Equation 2.

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+Eβ∼pβ(β)[log(1−D(G(β)))]
(2)

In terms of neural networks, the input to the GAN is
either x(i)true or x(i)recon and the GAN is tasked with classifying

the incoming vector as either original or reconstructed. The
subnetwork GAN : Rg → 0 ≤ R ≤ is two MLPs with
trainable parameters.

The GAN subnetwork is trained on the gradient generated
by binary cross entropy loss of classifying x(i)true and x(i)recon as
either true or reconstructed, LG1 = −0.01∗ log(GAN(x

(i)
recon)).

The opposite of this loss is propagated through the rest of
the network as LG2. The reconstruction losses are then totaled
together for adjusting the network after each training cycle.
This total loss is denoted as Lrecon and is calculated in
Equation 3.

Lrecon(X) = LC-VAE + LG2 + 0.01 ∗ MSE (3)

Through imperical testing, it was found that multipling the
MSE by the scalar 0.01 leads to the best network results. Lrecon
is then added into the total loss of the network after each
training cycle.

D. Angular Loss with Cross-Entropy

Our Siamese network is trained with the triplet loss
method [11]. For our Siamese network, we have designed an
angular similarity loss technique. This loss is derived from the
cosine similarity between the three samples. We will denote
each anchor, positive, and negative trained through the network
as Xa, Xp, and Xn. First, the angular distance between the
anchor and the positive, and the angular distance between the
anchor and the negative are calculated. The calculation for
angular distance is shown in Equation 4.

D(u, v) = arccos
(

u · v
∥u∥ ∥v∥

)
/π ± ϵ (4)

Where ϵ is a very small real constant added to our angular
distance to ensure differentiation. By the range of arccos, the
distance function is bounded between (0 + ϵ) and (1 − ϵ).
The ideal result for our network is if there is no distance
between our anchor and positive, and the maximal distance of
(1 − 2ϵ) between our anchor and negative. The goal of our
loss is to maximize the difference between the negative and
positive distance (Dnegative −Dpositive). We have defined Ldist

to be a minimizing function that maximizes the previously
discussed distance. Ldist is defined in Equation 5.

Ldist = − 1

n

n∑
i=1

log([D(Xai
, Xni

)−D(Xai
, Xpi

)])

− 1

n

n∑
i=1

log(D(Xai
, Xni

)) +
1

n

n∑
i=1

log(D(Xai
, Xpi

))

(5)

We utilize log loss for our distance loss equation to speed
up network convergence. First, we find the loss in the total
distance between the negative and positive distance calcula-
tions. We then find the loss between the negative distance and
0, and between the positive distance and 1. The second two
calculations are added to our loss to ensure that the movement
of distances is equally weighted in our loss calculation.

Finally, the total loss of the network is calculated from
the reconstruction loss and the triplet loss. For malware

Model AUC Accuracy F1 Score Precision Recall µ Positive Similarity ± σ2 µ Negative Similarity ± σ2 Optimal Threshold

Image 0.868 0.798 0.813 0.757 0.877 0.441±0.044 0.153±0.026 0.194
Image signature 0.785 0.720 0.773 0.650 0.952 0.468±0.039 0.244±0.043 0.157
Strings 0.831 0.770 0.791 0.724 0.873 0.465±0.047 0.190±0.041 0.200
Imports 0.738 0.718 0.756 0.666 0.874 0.356±0.042 0.199±0.053 0.111
Code 0.870 0.786 0.800 0.755 0.850 0.467±0.072 0.129±0.031 0.031
Hsiao et al. [1] 0.668 0.704 0.751 0.647 0.896 0.599±0.074 0.373±0.164 0.162
Zhu et al. [3] (single loss) 0.878 0.810 0.797 0.856 0.747 0.724±0.096 0.245±0.044 0.531
Zhu et al. [3] (dual loss) 0.881 0.832 0.815 0.904 0.742 0.701±0.100 0.209±0.035 0.521
Khandhar [2] 0.875 0.790 0.791 0.788 0.795 0.545±0.035 0.274±0.019 0.378
Viz* 0.917 0.835 0.843 0.803 0.888 0.475±0.044 0.127±0.024 0.192

TABLE I: Results of different models on the zero-day set. (* indicates proposed model)

Model AUC Accuracy F1 Score Precision Recall µ Positive Similarity ± σ2 µ Negative Similarity ± σ2 Optimal Threshold

Image 0.888 0.834 0.857 0.768 0.971 0.477±0.048 0.141±0.031 0.151
Image signature 0.835 0.796 0.822 0.728 0.945 0.360±0.025 0.171±0.031 0.151
Strings 0.857 0.806 0.807 0.801 0.814 0.389±0.035 0.147±0.033 0.189
Imports 0.782 0.778 0.810 0.707 0.948 0.439±0.035 0.214±0.066 0.154
Code 0.865 0.821 0.838 0.762 0.931 0.454±0.076 0.130±0.043 0.071
Hsiao et al. [1] 0.560 0.628 0.634 0.624 0.645 0.485±0.082 0.420±0.155 0.490
Zhu et al. [3] (single loss) 0.827 0.824 0.805 0.897 0.731 0.792±0.087 0.380±0.041 0.690
Zhu et al. [3] (dual loss) 0.859 0.794 0.798 0.783 0.815 0.745±0.081 0.337±0.043 0.451
Khandhar [2] 0.863 0.795 0.811 0.751 0.883 0.525±0.019 0.327±0.015 0.375
Viz* 0.958 0.898 0.895 0.923 0.869 0.292±0.025 0.050±0.003 0.136

TABLE II: Results of different models on the benign set. (* indicates the proposed model)

embeddings Xa, Xp, and Xn, the total loss of the network
is calculated in Equation 6.

Ltotal =
Lrecon(Xa) + Lrecon(Xp) + Lrecon(Xn)

3
+ Ldistance

(6)
The loss Ltotal is then averaged by the batch and propagated
back into the model. In total, our model has 597,605 trainable
parameters. For model training, we used the Adam optimiza-
tion algorithm with a learning rate of 0.0001.

IV. EXPERIMENTS

A. Experiment Setup

There were two experiments that were conducted on our
proposed network. These experiments were to evaluate the
similarity of zero-day malware samples and the similarity of
benignware samples. The first experiment showed whether our
network was able to accurately match variants of malware
families that it had never seen before. This simulated a
real world environment where incoming malware samples
may be variants of families that have never been seen by
the network. The second experiment evaluated the similarity
analysis performance against benignware, further evaluating
the out of sample similarity detection ability of the network.
No families that have been tested on the network were part of
families during the training process, so the experiments were
zero-shot testing.

Three datasets were needed to conduct the two experiments.
The first dataset was a training set. It was comprised of
100,000 triplet pairs sampled from 20 common malware
families available from MalwareBazaar3. The second dataset
was the zero-day set. It was a set of 10,000 triplet pairs of

3A malware samples sharing platform

malware that were all variants of families not used in the
training set. An extra 20,000 triplet pairs from the training
families were used as a validation set.

There were 9 benchmarks that were compared against our
network in the two experiments. The first five benchmarks
were the separate subnetworks of our network. This was
performed as an ablation test to show how the performance
of our networks is raised from multi-modality learning and
show which modalities give our network more insight to-
wards the best embedding of the malware. These networks
do not perform reconstruction. We denoted each of these
benchmarks by the single modality used in our results. As
well, we evaluated our model against four state-of-the-art
malware similarity networks proposed by Khandhar, Hsiao et
al. and Zhu et al. [1]–[3]. Each of these four benchmarks are
denoted by their authors. For our experiments, we denoted
our proposed network as Viz. All of the networks discussed
were trained for 10 epochs. A single epoch of training takes
1256 seconds (0.0126 seconds per triplet pair). Evaluating
data took 0.0014 seconds per triplet pair. The computer used
for experiments was a Linux machine with 16 cores Xeon
Gold 2.3/3.9 GHz, a single RTX6000 with 24GB of VRAM,
and 200GB of memory. The metrics used for the experiments
were Area Under the ROC Curve (AUC), accuracy, precision,
recall, mean positive similarity, mean negative similarity, and
F1 Score. As well, an optimal threshold was derived from the
ROC curve for determining the prediction labels.

B. Evaluation Results
The results for the zero-day malware experiment can be

seen in Table I. The model with the best performance on the
zero-day set was Viz with an AUC of 0.917 and an accuracy
of 0.835.The results from the benign set experiment can be
seen in Table II. The model with the highest performance

https://bazaar.abuse.ch/

on the benign set was Viz with an AUC of 0.958, followed
by the image subnetwork with an AUC of 0.888. This high
performance in the image subnetwork on the benign set may
be caused by the overall structure of benign software rarely
being changed.

V. RELATED WORK

Malware Similarity Analysis. Malware similarity analysis
is the domain of studying methods for finding similarities
between malware samples. Similarity analysis has been shown
to be effective using many different input spaces, such as
API sequence alignments and feature hashing [12]–[14]. One
method proposed by Jang et al. used hashed feature vectors
and co-clustering techniques for malware detection and family
classification [13]. Similar to feature hashing, our system gen-
erates an embedding that can be used for similarity analysis,
but our work does not require the full information on an
incoming malware sample. Also, our system utilizes machine
learning for the embedding generation.
Siamese Networks for Binary Similarity Analysis. The
Siamese network is a neural network architecture originally
proposed by Bromley et al. for handwritten signature verifica-
tion [15]. Siamese networks have been further applied to the
task of binary code similarity analysis. Stokes et al. proposed a
siamese network for classifying a small set of malware families
based on family specific n-grams [16]. Khandhar, Hsiao et
al. and Zhu et al. have all employed Siamese networks for
performing binary similarity analysis in images formed from
raw binary content [1]–[3]. As well, none of these systems
implemented a triplet loss function. The system proposed by
Hsiao et al. is the only of the four to attempt to classify zero-
day malware samples. Ji et al. proposed a system for source-
binary code similarity analysis [17]. Siamese networks have
also recently been shown to work in similarity analysis of
Android binaries [18].

VI. CONCLUSION

In this study, we present a real-world malware similarity
analysis tool that has the ability to accurately match variants
of zero-day malware. Our experiments showed that multi-
modality learning can greatly improve model performance
for malware similarity analysis. Future work involve training
similarity analysis systems against adversarial malware.

VII. ACKNOWLEDGEMENTS

We acknowledge the support of the Natural Sciences and
Engineering Research Council of Canada (NSERC) [funding
reference number ALLRP 561035-20], BlackBerry Limited,
and Defence R&D Canada.

REFERENCES

[1] S. Hsiao, D. Kao, Z. Liu, and R. Tso, “Malware image classification
using one-shot learning with siamese networks,” in Knowledge-Based
and Intelligent Information & Engineering Systems: Proceedings of
the 23rd International Conference KES-2019, Budapest, Hungary, 4-6
September 2019, ser. Procedia Computer Science, I. J. Rudas, J. Csirik,
C. Toro, J. Botzheim, R. J. Howlett, and L. C. Jain, Eds., vol. 159.
Elsevier, 2019.

[2] S. Khandhar, “A few-shot malware classification approach for unknown
family recognition using malware feature visualization,” 2021.

[3] J. Zhu, J. Jang-Jaccard, and P. A. Watters, “Multi-loss siamese neural
network with batch normalization layer for malware detection,” IEEE
Access, vol. 8, 2020.

[4] D. Gibert, C. Mateu, J. Planes, and R. Vicens, “Using convolutional
neural networks for classification of malware represented as images,” J.
Comput. Virol. Hacking Tech., vol. 15, no. 1, 2019.

[5] C. Wong, M. W. Bern, and D. Goldberg, “An image signature for any
kind of image,” in Proceedings of the 2002 International Conference
on Image Processing, ICIP 2002, Rochester, New York, USA, September
22-25, 2002. IEEE, 2002.

[6] J. Lee, C. Im, and H. Jeong, “A study of malware detection and
classification by comparing extracted strings,” in Proceedings of the 5th
International Conference on Ubiquitous Information Management and
Communication, ICUIMC 2011, Seoul, Republic of Korea, February 21
- 23, 2011, S. Lee, L. Hanzo, M. Y. Chung, S. Lee, and K. Cho, Eds.
ACM, 2011.

[7] J. Bai, J. Wang, and G. Zou, “A malware detection scheme based on
mining format information,” The Scientific World Journal, vol. 2014,
2014.

[8] N. Carlini, A. Athalye, N. Papernot, W. Brendel, J. Rauber, D. Tsipras,
I. J. Goodfellow, A. Madry, and A. Kurakin, “On evaluating adversarial
robustness,” CoRR, vol. abs/1902.06705, 2019.

[9] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in
2nd International Conference on Learning Representations, ICLR 2014,
Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings,
Y. Bengio and Y. LeCun, Eds., 2014.

[10] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. C. Courville, and Y. Bengio, “Generative adversarial nets,”
in Advances in Neural Information Processing Systems 27: Annual
Conference on Neural Information Processing Systems 2014, December
8-13 2014, Montreal, Quebec, Canada, Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger, Eds., 2014.

[11] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified em-
bedding for face recognition and clustering,” in IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA,
USA, June 7-12, 2015. IEEE Computer Society, 2015.

[12] J. D. Kornblum, “Identifying almost identical files using context trig-
gered piecewise hashing,” Digit. Investig., vol. 3, no. Supplement-1,
2006.

[13] J. Jang, D. Brumley, and S. Venkataraman, “Bitshred: feature hashing
malware for scalable triage and semantic analysis,” in Proceedings of the
18th ACM Conference on Computer and Communications Security, CCS
2011, Chicago, Illinois, USA, October 17-21, 2011, Y. Chen, G. Danezis,
and V. Shmatikov, Eds. ACM, 2011.

[14] I. K. Cho, T. Kim, Y. J. Shim, H. Park, B. Choi, and E. G. Im, “Malware
similarity analysis using API sequence alignments,” J. Internet Serv. Inf.
Secur., vol. 4, no. 4, 2014.

[15] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature
verification using a siamese time delay neural network,” in Advances in
Neural Information Processing Systems 6, [7th NIPS Conference, Den-
ver, Colorado, USA, 1993], J. D. Cowan, G. Tesauro, and J. Alspector,
Eds. Morgan Kaufmann, 1993.

[16] J. W. Stokes, C. Seifert, J. Li, and N. Hejazi, “Detection of prevalent
malware families with deep learning,” in 2019 IEEE Military Commu-
nications Conference, MILCOM 2019, Norfolk, VA, USA, November 12-
14, 2019. IEEE, 2019.

[17] Y. Ji, L. Cui, and H. H. Huang, “Buggraph: Differentiating source-binary
code similarity with graph triplet-loss network,” in ASIA CCS ’21: ACM
Asia Conference on Computer and Communications Security, Virtual
Event, Hong Kong, June 7-11, 2021, J. Cao, M. H. Au, Z. Lin, and
M. Yung, Eds. ACM, 2021.

[18] J. Zhu, J. Jang-Jaccard, A. Singh, P. A. Watters, and S. Camtepe,
“Task-aware meta learning-based siamese neural network for classifying
obfuscated malware,” CoRR, vol. abs/2110.13409, 2021.

	Introduction
	Heterogeneous Malware Information
	Multi-Modality Similarity Learning
	Modality Encoding
	Conditional Cross-Modality Reconstruction
	Reconstruction through Minmax Learning
	Angular Loss with Cross-Entropy

	Experiments
	Experiment Setup
	Evaluation Results

	Related Work
	Conclusion
	Acknowledgements
	References

